In Parkinson's disease, characteristic pathological features are the cell death of nigrostriatal dopamine neurons and the formation of Lewy bodies composed of oxidized proteins. Mitochondrial dysfunction and aggregation of abnormal proteins have been proposed to cause the pathological changes. However, the relation between these two factors remains to be clarified. In this study, the effects of mitochondrial dysfunction on the oxidative modification and accumulation of proteins were analyzed using an inhibitor of mitochondrial complex I, rotenone, and antibodies against acrolein- and dityrosine-modified proteins. Under conditions inducing mainly apoptosis in neuroblastoma SH-SY5Y cells, rotenone markedly increased oxidized proteins, especially those modified with acrolein, even though the increase in intracellular reactive oxygen and nitrogen species was only transient and was not so marked. In addition, the activity of the proteasome system degrading oxidized proteins was reduced profoundly after treatment with rotenone. The 20S beta subunit of proteasome was modified with acrolein, to which other acrolein-modified proteins were found to bind, as shown by coprecipitation with the antibody against 20S beta subunit. These results suggest that mitochondrial dysfunction, especially decreased activity of complex I, may reduce proteasome activity through oxidative modification of proteasome itself and aggregation with other oxidized proteins. This mechanism might account for the accumulation of modified protein and, at least partially, for cell death of the dopamine neurons in Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.10777 | DOI Listing |
Theranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, People's Republic of China.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. However, the molecular mechanism underlying the occurrence and development of HCC remains unclear. We are interested in the function of m6A methylation enzyme WTAP in the occurrence and development of HCC.
View Article and Find Full Text PDFJ Cancer
January 2025
Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, PR China.
Targeted inhibition of mitochondrial oxidative phosphorylation (OXPHOS) complex generation is an emerging and promising cancer treatment strategy, but limited targets and specific inhibitors have been reported. Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) is an atypical RNA-binding protein that regulates the stability of all 13 mitochondrial DNA-encoded mRNA (mt-mRNA) and thus participates in the synthesis of the OXPHOS complex. LRPPRC is also a prospective therapeutic target for lung adenocarcinoma, serving as a promising target for OXPHOS inhibition.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
School of Basic Medical Science, Jining Key Laboratory of Pharmacology, Jining Medical University, Jining, Shandong, China.
Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Botany, University of Kashmir, Srinagar, 190006 India.
Petal senescence represents a crucial phase in the developmental continuum of flowers, ensuing tissue differentiation and petal maturation, yet anteceding seed formation and development. Instigation of petal senescence entails myriad of changes at the cytological, physiological and molecular dimensions, mirroring the quintessential characteristics of cell death. In the current investigation biochemical and molecular intricacies were scrutinized across various developmental stages (bud to the senescent phase).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!