Single-nucleotide polymorphism (SNP) genotypes were recently examined in an 890-kb region flanking the human gene CYP2D6. Single-marker and haplotype-based analyses identified, with genomewide significance (P < 10-7), a 403-kb interval displaying strong linkage disequilibrium (LD) with predicted poor-metabolizer phenotype. However, the width of this interval makes the location of causal variants difficult: for example, the interval contains seven known or predicted genes in addition to CYP2D6. We have developed the Bayesian fine-mapping software coldmap, which, applied to these genotype data, yields a 95% location interval covering only 185 kb and establishes genomewide significance for a causal locus within the region. Strikingly, our interval correctly excludes four SNPs, which individually display association with genomewide significance, including the SNP showing strongest LD (P < 10-34). In addition, coldmap distinguishes homozygous cases for the major CYP2D6 mutation from those bearing minor mutations. We further investigate a selection of SNP subsets and find that previously reported methods lead to a 38% savings in SNPs at the cost of an increase of <20% in the width of the location interval.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC263833PMC
http://dx.doi.org/10.1073/pnas.2235031100DOI Listing

Publication Analysis

Top Keywords

genomewide significance
12
location interval
8
interval
6
multipoint linkage-disequilibrium
4
linkage-disequilibrium mapping
4
mapping narrows
4
narrows location
4
interval identifies
4
identifies mutation
4
mutation heterogeneity
4

Similar Publications

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.

View Article and Find Full Text PDF

Epidemiological data suggest the population distribution of thyrotropin (TSH) values is shifted toward lower values in self-identified Black non-Hispanic individuals compared with self-identified White non-Hispanic individuals. It is unknown whether genetic differences between individuals with genetic similarities to African reference populations (GSA) and those with similarities to European reference populations (GSE) contribute to these observed differences. We aimed to compare genome-wide associations with TSH and putative causal TSH-associated variants between GSA and GSE groups.

View Article and Find Full Text PDF

Investigation of Genomic and Transcriptomic Risk Factors of Clopidogrel Response in African Americans.

Clin Pharmacol Ther

January 2025

Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Clopidogrel, an anti-platelet drug, is used to prevent thrombosis after percutaneous coronary intervention. Clopidogrel resistance results in recurring ischemic events, with African Americans (AA) suffering disproportionately. The aim of this study was to discover novel biomarkers of clopidogrel resistance in African Americans using genome and transcriptome data.

View Article and Find Full Text PDF

Genome-wide identification of binding profiles for DNA-binding proteins from the limited number of intracellular pathogens in infection studies is crucial for understanding virulence and cellular processes but remains challenging, as the current ChIP-exo is designed for high-input bacterial cells (>1010). Here, we developed an optimized ChIP-mini method, a low-input ChIP-exo utilizing a 5,000-fold reduced number of initial bacterial cells and an analysis pipeline, to identify genome-wide binding dynamics of DNA-binding proteins in host-infected pathogens. Applying ChIP-mini to intracellular Salmonella Typhimurium, we identified 642 and 1,837 binding sites of H-NS and RpoD, respectively, elucidating changes in their binding position and binding intensity during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!