Extracellular matrix (ECM) proteins and cell-cell adhesion molecules (CAM) play important roles in neuronal development and differentiation. In the investigation of these roles, patterned substrates have proven to be a notably useful tool. Photolithographic and microprinting techniques can be used to make patterns of ECMs, CAMs, amino acids, and organofunctional groups for culturing neurons and other cell types. Experiments performed using these substrates have provided unique insights into the roles of cell-substratum adhesion, cell shape, and ECM composition on important cell functions, including survival, migration, neurite outgrowth, and development of polarity. Patterns may also be designed to localize cell bodies and confine their processes to predetermined areas of a substrate. Finally, the behavior of neurons on patterned substrates may prove helpful in the design of scaffoldings and nerve guides tailored for regeneration and repair of the nervous system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0014-4886(03)00392-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!