A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights into the pathophysiology of neuropathic pain through functional brain imaging. | LitMetric

Insights into the pathophysiology of neuropathic pain through functional brain imaging.

Exp Neurol

Department of Neurology and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA.

Published: November 2003

We present here an example case of neuropathic pain with heat allodynia as a major symptom to illustrate how the functional imaging of pain may provide new insights into the pathophysiology of painful sensory disorders. Tissue injury of almost any kind, but especially peripheral or central neural tissue injury, can lead to long-lasting spinal and supraspinal re-organization that includes the forebrain. These forebrain changes may be adaptive and facilitate functional recovery, or they may be maladaptive, preventing or prolonging the painful condition, and interfering with treatment. In an experimental model of heat allodynia, we used functional brain imaging to show that: (1) the forebrain activity during heat allodynia is different from that during normal heat pain, and (2) during heat allodynia, specific cortical areas, specifically the dorsolateral prefrontal cortex, can attenuate specific components of the pain experience, such as affect, by reducing the functional connectivity of subcortical pathways. The forebrain of patients with chronic neuropathic pain may undergo pathologically induced changes that can impair the clinical response to all forms of treatment. Functional imaging, including PET, fMRI, and neurophysiological techniques, should help identify brain mechanisms that are critical targets for more effective and more specific treatments for chronic, neuropathic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2003.07.006DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
16
heat allodynia
16
insights pathophysiology
8
functional brain
8
brain imaging
8
pain heat
8
functional imaging
8
tissue injury
8
chronic neuropathic
8
pain
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!