The genes encoding the pyruvate dehydrogenase (PDH) complex (pdhA, pdhB, pdhC and pdhD) from Mycoplasma hyopneumoniae have been cloned and sequenced. The genes are arranged into two operons, designated pdhAB and pdhCD, which are not found together in the chromosome. The pdhA, pdhB, pdhC and pdhD genes encode proteins of predicted molecular masses of 44.2 kDa (pyruvate dehydrogenase major subunit; E1alpha), 36.6 kDa (pyruvate dehydrogenase minor subunit; E1beta), 33.1 kDa (dihydrolipoyl acetyltransferase; E2) and 66.3 kDa (dihydrolipoyl dehydrogenase; E3), respectively. Sequence analysis of the pdhCD operon revealed the presence of a lipoyl-binding domain in pdhD but not in pdhC. The lipoyl domain is believed to act as a "swinging arm" that spans the gaps between the catalytic domains of each of the subunits. Portions of the N-terminal regions of pdhA and pdhD were expressed as 6xHis-tag fusion proteins in Escherichia coli and purified by nickel affinity chromatography. The purified proteins were used to raise antibodies in rabbits, and Western blot analysis was performed with the polyclonal rabbit antiserum. Both the pdhA and pdhD genes were expressed among various strains of M. hyopneumoniae as well as the porcine mycoplasmas, Mycoplasma hyorhinis and Mycoplasma flocculare. Southern hybridisation analysis using probes from pdhA and pdhD detected one copy of each gene in the chromosome of M. hyopneumoniae. Since previous studies have shown pyruvate dehydrogenase activity in M. hyopneumoniae [J. Gen. Microbiol. 134 (1988) 791], it appears likely that a functional lipoyl-binding domain in the N terminus of PdhC is not an absolute prerequisite for pyruvate dehydrogenase enzyme activity. We hypothesise that the lipoyl-binding domain of PdhD is performing the enzymatic function normally attributed to the PdhC lipoyl-binding domain in other organisms. Searches of pyruvate dehydrogenase gene sequences derived from other Mycoplasma species showed that a putative lipoyl domain was absent in the pdhC gene from Mycoplasma pulmonis. However, like other bacterial species, pdhC gene sequences from Mycoplasma capricolum, Mycoplasma genitalium and Mycoplasma pneumoniae contain a putative lipoyl domain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-1119(03)00798-4 | DOI Listing |
Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
Oxidation of lactate under anaerobic dark fermentative conditions poses an energetic problem. The redox potential of the lactate/pyruvate couple is too electropositive to reduce the physiological electron carriers NAD(P) or ferredoxin. However, the thermophilic, anaerobic, and acetogenic model organism Moorella thermoacetica can grow on lactate but was suggested to have a NAD-dependent lactate dehydrogenase (LDH), based on enzyme assays in cell-free extract.
View Article and Find Full Text PDFStem Cell Res
December 2024
Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:
Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Málaga, Spain.
Glutaminase controls the first step in glutaminolysis, impacting bioenergetics, biosynthesis and oxidative stress. Two isoenzymes exist in humans, GLS and GLS2. GLS is considered prooncogenic and overexpressed in many tumours, while GLS2 may act as prooncogenic or as a tumour suppressor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!