Alterations in the trafficking and function of the endocytic pathway have been extensively documented to be one of the earliest pathological changes in sporadic Alzheimer's disease (AD). Although the pathophysiological consequences of these endosomal/lysosomal changes are currently unknown, several recent studies have suggested that such changes in endocytic function are able to cause a redistribution of several lysosomal hydrolases into early endosomes, leading to the overproduction of neurotoxic amyloid peptide. Recently, we and others have demonstrated that abnormal endocytic pathology within post-mitotic neurons can, in part, be attributed to alterations in sphingomyelin/ceramide metabolism, resulting in the intracellular accumulation of ceramide. Once inside the cell, the ability of ceramide to physically alter membrane structure, formation, and fusion, rather than serving solely as a lipid secondary messenger, may severely compromise normal endocytic trafficking. In this review, we will discuss the potential pathological effects of abnormal sphingomyelin/ceramide metabolism on intracellular vesicular transport in relation to both amyloid accumulation in AD and various neurodegenerative diseases associated with lysosomal abnormalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.addr.2003.07.007 | DOI Listing |
Discov Oncol
January 2025
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.
Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!