We examined radiosensitizing properties of two novel platinum complexes (ethylenediamine(L-malato)platinum(II)), Pt1 and bis(1-ethylimidazole(L-malato)platinum(II)), Pt4. Initial double strand break (DSB) level and DSB rejoining were measured, using pulse field gel electrophoresis (PFGE) in human G1 phase lymphocytes subjected to Pt complex treatment alone and in combination with 10Gy of X-rays. Effects of Pt complex pre-treatment followed by X-irradiation were examined on survival (clonogenic ability) and growth (48 h growth tests) in Chinese hamster ovary (CHO-K1), xrs6 and L5178Y (LY) cells (LY-R and LY-S sublines). Cell cycle distributions of CHO cells after drug treatment were determined with the use of flow cytometry. Pt1 slowed down rejoining of X-ray induced DSB. It exerted a more than additive lethal effect on CHO-K1 cells but not on L5178Y cells subjected to combined Pt complex treatment and X-irradiation. In xrs6 cells the effect of combined Pt1+X treatment was additive. We conclude that, as earlier proposed for other Pt complexes, the radiosensitizing effect of Pt1 is connected with converting repairable DNA damage into irrepairable one (mode (i) of action). The requirements for this mode of sensitization are functional DNA repair systems (nucleotide excision repair (NER) and non-homologous end-joining (NHEJ)). Pt4 does not slow down DSB rejoining. It shows a considerable ability to arrest cells in G2 phase. We assume that Pt4 pre-treatment arrests cells in G2 phase and thus sensitizes to X-rays these cells that have a radiosensitive G2 phase (mode (ii) of action).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0009-2797(03)00106-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!