The present study describes the isolation and pharmacological characterisation of the neurotoxin delta-missulenatoxin-Mb1a (delta-MSTX-Mb1a) from the venom of the male Australian eastern mouse spider, Missulena bradleyi. This toxin was isolated using reverse-phase high-performance liquid chromatography and was subsequently shown to cause an increase in resting tension, muscle fasciculation and a decrease in indirect twitch tension in a chick biventer cervicis nerve-muscle bioassay. Interestingly, these effects were neutralised by antivenom raised against the venom of the Sydney funnel-web spider Atrax robustus. Subsequent whole-cell patch-clamp electrophysiology on rat dorsal root ganglion neurones revealed that delta-MSTX-Mb1a caused a reduction in peak tetrodotoxin (TTX)-sensitive sodium current, a slowing of sodium current inactivation and a hyperpolarising shift in the voltage at half-maximal activation. In addition, delta-MSTX-Mb1a failed to affect TTX-resistant sodium currents. Subsequent Edman degradation revealed a 42-residue peptide with unusual N- and C-terminal cysteines and a cysteine triplet (Cys(14-16)). This toxin was highly homologous to a family of delta-atracotoxins (delta-ACTX) from Australian funnel-web spiders including conservation of all eight cysteine residues. In addition to actions on sodium channel gating and kinetics to delta-ACTX, delta-MSTX-Mb1a caused significant insect toxicity at doses up to 2000 pmol/g. Delta-MSTX-Mb1a therefore provides evidence of a highly conserved spider delta-toxin from a phylogenetically distinct spider family that has not undergone significant modification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)01175-xDOI Listing

Publication Analysis

Top Keywords

spider delta-toxin
8
missulena bradleyi
8
delta-mstx-mb1a caused
8
sodium current
8
spider
5
delta-mstx-mb1a
5
isolation delta-missulenatoxin-mb1a
4
delta-missulenatoxin-mb1a major
4
major vertebrate-active
4
vertebrate-active spider
4

Similar Publications

Magi 4, now renamed delta-hexatoxin-Mg1a, is a 43-residue neurotoxic peptide from the venom of the hexathelid Japanese funnel-web spider (Macrothele gigas) with homology to delta-hexatoxins from Australian funnel-web spiders. It binds with high affinity to receptor site 3 on insect voltage-gated sodium (Na(V)) channels but, unlike delta-hexatoxins, does not compete for the related site 3 in rat brain despite being previously shown to be lethal by intracranial injection. To elucidate differences in Na(V) channel selectivity, we have undertaken the first characterization of a peptide toxin on a broad range of mammalian and insect Na(V) channel subtypes showing that delta-hexatoxin-Mg1a selectively slows channel inactivation of mammalian Na(V)1.

View Article and Find Full Text PDF

The present study describes the isolation and pharmacological characterisation of the neurotoxin delta-missulenatoxin-Mb1a (delta-MSTX-Mb1a) from the venom of the male Australian eastern mouse spider, Missulena bradleyi. This toxin was isolated using reverse-phase high-performance liquid chromatography and was subsequently shown to cause an increase in resting tension, muscle fasciculation and a decrease in indirect twitch tension in a chick biventer cervicis nerve-muscle bioassay. Interestingly, these effects were neutralised by antivenom raised against the venom of the Sydney funnel-web spider Atrax robustus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!