The nucleoside hydrolase (NH) of the Trypanosoma vivax parasite catalyzes the hydrolysis of the N-glycosidic bond in ribonucleosides according to the following reaction: beta-purine (or pyrimidine) nucleoside + H(2)O --> purine (pyrimidine) base + ribose. The reaction follows a highly dissociative nucleophilic displacement reaction mechanism with a ribosyl oxocarbenium-like transition state. This paper describes the first pre-steady-state analysis of the conversion of a number of purine nucleosides. The NH exhibits burst kinetics and behaves with half-of-the-sites reactivity. The analysis suggests that the NH of T. vivax follows a complex multistep mechanism in which a common slow step different from the chemical hydrolysis is rate limiting. Stopped-flow fluorescence binding experiments with ribose indicate that a tightly bound enzyme-ribose complex accumulates during the enzymatic hydrolysis of the common purine nucleosides. This is caused by a slow isomerization between a tight and a loose enzyme-ribose complex forming the rate-limiting step on the reaction coordinate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0347914 | DOI Listing |
Biochemistry
January 2025
School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, United Kingdom.
The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic ()-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to -4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
Biochemistry
January 2025
Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019-0065, United States.
F-dependent glucose-6-phosphate dehydrogenase (FGD) catalyzes the conversion of glucose-6-phosphate (G6P) to 6-phosphogluconolactone, using cofactor F as the hydride transfer acceptor. Our previous pH dependence studies suggested that E109 serves as an active site acid, donating a proton to the N-1 position of F, while leaving the role of H40 unanswered, which was previously suggested to serve as the active site base. This work utilizes thermodynamic and kinetic studies to elucidate additional mechanistic details concerning the roles of H40 and E13.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
Apurinic/apyrimidinic endonuclease 1 (APE1) is responsible for the hydrolysis of the phosphodiester bond on the 5' side of an apurinic/apyrimidinic site during base excision repair. Moreover, in DNA, this enzyme can recognize nucleotides containing such damaged bases as 5,6-dihydro-2'-deoxyuridine (DHU), 2'-deoxyuridine (dU), alpha-2'-deoxyadenosine (αA), and 1,6-ethenoadenosine (εA). Previously, by pulsed electron-electron double resonance spectroscopy and pre-steady-state kinetic analysis, we have revealed multistep DNA rearrangements during the formation of the catalytic complex.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Chemical Engineering, University of Texas at Austin (UT Austin), Austin, TX, USA.
Laboratory evolution studies have demonstrated that parallel evolutionary trajectories can lead to genetically distinct enzymes with high activity towards a non-preferred substrate. However, it is unknown whether such enzymes have convergent conformational dynamics and mechanistic features. To address this question, we use as a model the wild-type Homo sapiens kynureninase (HsKYNase), which is of great interest for cancer immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!