Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The in vitro metabolic and non-metabolic degradation kinetics of mometasone furoate (MF) was investigated in selected human biological fluids and subcellular fractions of tissues. Qualitative and quantitative differences in transformation profiles of MF were observed among human biological media. Degradation was the major event in plasma and urine with four new degradation products identified; A: 21-chloro-17alpha-hydroxy-16alpha-methyl-9beta,11beta-oxidopregna-1,4-diene-3,20-dione 17-(2-furoate), B: 9alpha,21beta-dichloro-11beta,21alpha-dihydroxy-16alpha-methylpregna-1,4,17,20-tetraen-3-one 21-(2-furoate), C: 21beta-chloro-21alpha-hydroxy-16alpha-methyl-9beta,11beta-oxidopregna-1,4,17,20-tetraen-3-one 21-(2-furoate), and D: 21-chloro-17alpha-hydroxy-16alpha-methyl-9beta,11beta-oxidopregna-1,4-diene-3,20-dione. A, B and C were predominant and D was minor in plasma while A and C were predominant in urine. Hydrolysis of the 17-ester bond of MF was not a major event in plasma. The turnover of MF in plasma was faster than that in phosphate buffers of pH 7.4. Metabolism of MF occurred primarily and rapidly in liver, appreciably in intestine, but negligibly in in vitro lung tissue. While 6beta-hydroxylation was a major metabolic pathway for MF in microsomes of both human liver and intestine, other parallel and subsequent metabolism pathways could also be involved. If these degradation and metabolic products are also formed and active in humans in vivo, both MF and its 'active' products need to be taken into account when determining the systemic bioavailability of MF and in establishing concentration-effect relationships with this drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdd.362 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!