The free solution mobilities of six single-stranded 16-nucleotide DNA oligomers with the same sequence, containing up to 11 neutral phosphoramidate internucleoside linkages, have been measured by capillary electrophoresis. The mobilities of the partially charged oligomers increase linearly with the logarithm of increasing charge density, as predicted by the Manning theory of electrophoresis (G. S. Manning, J. Phys. Chem. 1981, 85, 1506-1515). For comparison, the mobilities of eight fully charged single-stranded oligomers containing similar numbers of charged phosphate residues have also been measured. The mobilities of the variable length, fully charged oligomers increase more rapidly with the increasing number of charged phosphate residues than the mobilities of the constant size, partially charged phosphoramidate derivatives, because of the larger diffusion coefficients of the modified oligomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.200305589 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!