Normal B-1a cell development requires B cell-intrinsic NFATc1 activity.

Proc Natl Acad Sci U S A

Department of Pathology and Graduate Program in Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.

Published: November 2003

B-1a cells, an anatomically, phenotypically, and functionally distinct subset of B cells that produce the bulk of natural serum IgM and much of gut-associated IgA, are an important component of the early response to pathogens. Because the induced expression of CD5, a hallmark of B-1a cells, requires a nuclear factor of activated T cells (NFAT)-dependent enhancer, we examined the role of NFAT transcription factors in B-1a development. Here we show that the B-1a compartment is normal in mice lacking NFATc2 but essentially absent in mice lacking NFATc1. Loss of NFATc1 affects both peritoneal and splenic B-1a cells. Because there is a loss of B-1 cells defined by markers other than CD5, NFATc1 is not required simply for CD5 expression on B-1a cells. Using mixed-allotype chimeras and retroviral-mediated gene transduction we show that the requirement for NFATc1 is B cell-intrinsic. We also demonstrate that NFATc1 protein expression is elevated approximately 5-fold in B-1a cells compared with B-2 cells. This is the first definitive demonstration of a B cell-intrinsic function for an NFAT family transcription factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC263836PMC
http://dx.doi.org/10.1073/pnas.2233620100DOI Listing

Publication Analysis

Top Keywords

b-1a cells
20
cells
9
mice lacking
8
b-1a
7
nfatc1
6
normal b-1a
4
b-1a cell
4
cell development
4
development requires
4
requires cell-intrinsic
4

Similar Publications

Sphingosine-1-phosphate receptor type 4 is critically involved in the regulation of peritoneal B-1 cell trafficking and distribution in vivo.

Eur J Immunol

December 2024

Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany.

B-1 cells are crucially involved in immune defense and regulation of inflammation and autoimmunity. B-1 cells are predominantly located in the peritoneal and pleural cavities, although body cavity B-1 cells recirculate systemically under steady-state conditions. The chemokines CXCL12 and CXCL13 have been identified as the main regulators of peritoneal B-cell trafficking.

View Article and Find Full Text PDF
Article Synopsis
  • Biomarkers are essential for detecting diseases like cancer early on, with CD5 being a key protein linked to immune regulation and various diseases.
  • A new electrochemical immunosensor using advanced Ti/Au electrodes allows for ultra-sensitive detection of CD5 in blood serum, surpassing current methods.
  • This sensor demonstrates impressive sensitivity, with detection limits far better than traditional ELISA kits, showing promise for enhancing early cancer diagnosis and other medical uses.
View Article and Find Full Text PDF

During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments.

View Article and Find Full Text PDF
Article Synopsis
  • B-1a cells help fight infections and control swelling by releasing special proteins.
  • In sepsis, these cells move to the spleen, changing their abilities, which can cause problems.
  • A protein called Siglec-G helps keep B-1a cells in place, but in sepsis, a substance from neutrophils can break it down, and scientists found a special decoy that can protect Siglec-G and help B-1a cells stay healthier.
View Article and Find Full Text PDF

Post-transcriptional (re)programming of B lymphocyte development: From bench to bedside?

Adv Immunol

May 2024

Integrative Immunobiology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States. Electronic address:

Article Synopsis
  • Hematopoiesis is the process of producing blood and immune cells, which undergo significant changes from fetal development to adulthood, especially marked by the formation of long-term hematopoietic stem cells (HSCs).
  • This text examines the post-transcriptional differences between fetal liver HSCs and adult bone marrow HSCs, exploring how certain RNA-binding proteins can reprogram adult HSCs to resemble their fetal counterparts.
  • Specifically, it highlights the role of LIN28B and IGF2BP3 in promoting the development of particular immune cells, proposing potential clinical applications, such as in utero HSC transplantation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!