The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M310601200 | DOI Listing |
Exp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFNeurology
February 2025
Department of Neurology, Washington University School of Medicine, St. Louis, MO.
Objectives: Intravenous tenecteplase (TNK) is increasingly used to treat adult patients with acute arterial ischemic stroke, but the risk profile of TNK in childhood stroke is unknown. This study aims to prospectively gather safety data regarding TNK administration in children.
Methods: Since December 2023, a monthly email survey was sent to participants recruited from the International Pediatric Stroke Study and Pediatric Neurocritical Care Research Group querying recent experience with TNK in childhood stroke.
Macromol Biosci
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.
Blood-contacting medical devices, especially extracorporeal membrane oxygenators (ECMOs), are highly susceptible to surface-induced coagulation because of their extensive surface area. This can compromise device functionality and lead to life-threatening complications. High doses of anticoagulants, combined with anti-thrombogenic surface coatings, are typically employed to mitigate this risk, but such treatment can lead to hemorrhagic complications.
View Article and Find Full Text PDFHeart Rhythm O2
December 2024
Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan.
Background: It remains unclear whether the newly adopted high-power, short-duration (HP-SD) setting in ablation for atrial fibrillation (AF) impacts periprocedural thrombotic markers or silent stroke (SS) onset.
Objective: The aim of the present study was to investigate the clinical impact of HP-SD setting ablation on changes in periprocedural thrombotic markers and the onset of SS.
Methods: We enrolled 101 AF patients: the HP-SD group (n = 67) using 50 W and the conventional ablation group (n = 34) using 30 to 40 W.
BMJ Open
January 2025
Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
Objectives: To investigate the safety and efficacy outcomes of intravenous thrombolysis (IVT) in patients aged >80 years with acute ischaemic stroke (AIS) after IVT was approved in this patient population in several European and non-European countries during 2018-2019.
Design: This is an observational registry study using prospectively collected data from the Safe Implementation of Treatment in Stroke (SITS) registry. Comparisons will be performed between patients treated post-approval (July 2018 to December 2021) period with those treated pre-approval (June 2015 to June 2018) period using propensity score matching (PSM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!