Screening and mutagenesis of Aspergillus niger for the improvement of glucose 6-phosphate dehydrogenase production.

Prikl Biokhim Mikrobiol

Key Laboratory of Gene Engineering of Ministry of Education and Biotechnology Research Center, Zhongshan University, Guangzhou 510275, P.R. China.

Published: June 2004

The strain of Aspergillus niger ZBY-7 was selected as the original strain of glucose 6-phosphate dehydrogenase production. After mutagenesis of the strain using UV irradiation and nitrosoguanidine, mutants of Aspergillus niger resistant to certain metabolic inhibitor were obtained. Five of the mutants showed increased glucose 6-phosphate dehydrogenase production. The mutant resistant to antimycin A (Aspergillus niger AM-23) produced the highest level of glucose 6-phosphate dehydrogenase (695.9% of that from the original strain).

Download full-text PDF

Source

Publication Analysis

Top Keywords

aspergillus niger
16
glucose 6-phosphate
16
6-phosphate dehydrogenase
16
dehydrogenase production
12
original strain
8
screening mutagenesis
4
aspergillus
4
mutagenesis aspergillus
4
niger
4
niger improvement
4

Similar Publications

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

This study attempted to isolate and identify pedospheric microbes originating in dumpsites and utilized them for the degradation of selected synthetic polymers for the first time in a cost-effective, ecologically favorable and sustainable manner. Specifically, low-density polyethylene (LDPE) and polyurethane (PUR) were converted by the isolated fungi, i.e.

View Article and Find Full Text PDF

Recovery of Phenolic Compounds with Antioxidant Capacity Through Solid-State Fermentation of Pistachio Green Hull.

Microorganisms

December 2024

Biotechnology and Bioengineering Laboratory, Centro de Investigación en Alimentación y Desarrollo, Delicias 33089, Chihuahua, Mexico.

Pistachio green hull (PGH) represents the non-edible fraction obtained after the seed is harvested and is an important source of phenolic compounds. Solid-state fermentation (SSF) is a viable biotechnological and economical technique for extracting phenolic compounds. This study aimed to evaluate the SSF with GH1 to recover total phenolic compounds (TPC) with antioxidant capacity (AC) from PGH.

View Article and Find Full Text PDF

Synergistic Enzybiotic Effect of a Bacteriophage Endolysin and an Engineered Glucose Oxidase Against .

Biomolecules

December 2024

Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain.

represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from (GOX).

View Article and Find Full Text PDF

Antimicrobial Potential of Secalonic Acids from Arctic-Derived INA 01369.

Antibiotics (Basel)

January 2025

Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia.

In this study, two compounds have been isolated from the Arctic-derived fungus INA 13460. Structural elucidation, performed using 2D NMR and HR-ESIMS data, has identified the compounds as stereoisomers of secalonic acids, dimeric tetrahydroxanthones. The absolute configurations of these stereoisomers have been determined through conformational NMR analysis and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!