Our knowledge on Neuregulin-1 (Nrg-1) during development of the nervous system is increasing rapidly, but little is known about Nrg-1-ErbB signaling in the adult brain. Nrg-1 is involved in determination, proliferation, differentiation, and migration of neurons and glial cells in the developing brain. In the peripheral nervous system, Nrg-1 signaling is required for Schwann cell differentiation and myelination, and establishment of neuromuscular junctions (NMJs). Multiple alternative splicing of Nrg-1 was shown, but correlation of its structural and functional diversity was rarely addressed. Therefore, we investigated the expression of Nrg-1 isoforms in the rat brain and brain-derived cell types, and their involvement in regeneration of the adult brain, using immunohistochemistry, in situ hybridization, and semiquantitative RT-PCR. We found expression of at least 12 distinct Nrg-1 isoforms in the brain and altered expression of several isoforms in the facial motor nucleus after peripheral transection of the seventh cranial nerve. An upregulation of Nrg-1 type-I mRNA, probably type- I-alpha, was observed in reactive astrocytes of the facial nucleus 1 d postaxotomy. Nrg-1 type-III and the splice variants beta1 and beta5 are dramatically downregulated in axotomized motoneurons, which lack contact to their target tissue. Baseline expression levels were reestablished when the first axons reached the facial muscles and reformed NMJs. Nrg-1-beta1 and -beta5 might act in maintenance of NMJs. The splice variants beta2 and beta4 display an initial downregulation of mRNA levels, followed by an increase during the period of axon remyelination. Thus, Nrg- 1-beta2 and -beta4 might be involved in myelination.

Download full-text PDF

Source
http://dx.doi.org/10.1385/JMN:21:2:149DOI Listing

Publication Analysis

Top Keywords

nervous system
12
nrg-1
8
adult brain
8
nrg-1 isoforms
8
splice variants
8
brain
5
neuregulin-1 isoforms
4
isoforms differentially
4
differentially expressed
4
expressed intact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!