Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor.

J Biol Chem

Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.

Published: January 2004

Necdin is a growth suppressor expressed predominantly in postmitotic neurons and implicated in their terminal differentiation. Necdin shows a moderate homology to the MAGE family proteins, the functional roles of which are largely unknown. Human genes encoding necdin, MAGEL2 (necdin-like 1), and MAGE-G1 (necdin-like 2) are located in proximal chromosome 15q, a region associated with neurodevelopmental disorders such as Prader-Willi syndrome, Angelman syndrome, and autistic disorder. The necdin and MAGEL2 genes are subjected to genomic imprinting and suggested to be involved in the etiology of Prader-Willi syndrome. In this study, we compared biochemical and functional characteristics of murine orthologs of these necdin-related MAGE proteins. The colony formation and bromodeoxyuridine incorporation analyses revealed that necdin and MAGE-G1, but not MAGEL2, induced growth arrest. Necdin and MAGE-G1 interacted with the transcription factor E2F1 via its transactivation domain, repressed E2F1-dependent transcription, and antagonized E2F1-induced apoptosis of N1E-115 neuroblastoma cells. In addition, necdin and MAGE-G1 interacted with the p75 neurotrophin receptor via its distinct intracellular domains. In contrast, MAGEL2 failed to bind to these necdin interactors, suggesting that MAGEL2 has no necdin-like function in developing brain. Overexpression of p75 translocated necdin and MAGE-G1 in the proximity of the plasma membrane and reduced their association with E2F1 to facilitate E2F1-induced death of neuroblastoma cells. These results suggest that necdin and MAGE-G1 target both E2F1 and p75 to regulate cell viability during brain development.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M308454200DOI Listing

Publication Analysis

Top Keywords

necdin mage-g1
20
necdin
10
necdin-related mage
8
mage proteins
8
transcription factor
8
p75 neurotrophin
8
neurotrophin receptor
8
necdin magel2
8
magel2 necdin-like
8
prader-willi syndrome
8

Similar Publications

Ependymomas often show characteristics similar to those of neural stem cells in vivo and in vitro. However, few ependymoma cell lines that exhibit neural stem cell-like properties have been reported. In this study, we have characterized a novel cell line, designated Vn19, established from ependymoma that arose in mice inoculated intracerebrally with human BK polyomavirus.

View Article and Find Full Text PDF

In mammals, the type II melanoma antigen (Mage) protein family is constituted by at least 10 closely related members that are expressed in different tissues, including the nervous system. These proteins are believed to regulate cell cycle withdrawal, neuronal differentiation, and apoptosis. However, the analysis of their specific function has been complicated by functional redundancy.

View Article and Find Full Text PDF

Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor.

J Biol Chem

January 2004

Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.

Necdin is a growth suppressor expressed predominantly in postmitotic neurons and implicated in their terminal differentiation. Necdin shows a moderate homology to the MAGE family proteins, the functional roles of which are largely unknown. Human genes encoding necdin, MAGEL2 (necdin-like 1), and MAGE-G1 (necdin-like 2) are located in proximal chromosome 15q, a region associated with neurodevelopmental disorders such as Prader-Willi syndrome, Angelman syndrome, and autistic disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!