Anti-acetylcholine receptor (AChR) monoclonal antibody 383C binds to the beta-hairpin loop alpha(187-199) of only one of the two Torpedo AChR alpha subunits. The loop recognized is associated with the alpha subunit corresponding to the high-affinity d-tubocurarine (dTC) binding site. Desensitization of the receptor with carbamylcholine completely blocks the binding of 383C. Mild reduction of AChR alpha subunit cys 192-193 disulfide with DTT and subsequent reaction with 5-iodoacetamidofluorescein label only the high-affinity dTC alpha subunit. Rhodamine-labeled alpha-bungarotoxin (R-Btx) binds to the unlabeled AChR alpha subunit as monitored by fluorescence resonance energy transfer between the fluorescein and rhodamine dyes. A 10-A contraction of the distance between the dyes is observed following the addition of carbamylcholine. In a small angle X-ray diffraction experiment exploiting anomalous X-ray scattering from Tb(III) ions titrated into AChR Ca(II) binding sites, we find evidence for a change in the Tb(III) ion distribution in the region of the ion channel following addition of carbamylcholine to the AChR. The carbamylcholine-induced loss of the 383C epitope, the 10-A contraction of the beta-hairpin loop, and the loss of multivalent cations from the channel likely represent the first molecular transitions leading to AChR channel opening.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1254.012DOI Listing

Publication Analysis

Top Keywords

alpha subunit
16
achr alpha
12
beta-hairpin loop
8
10-a contraction
8
addition carbamylcholine
8
achr
7
alpha
5
agonist-induced transitions
4
transitions acetylcholine
4
acetylcholine receptor
4

Similar Publications

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Hemoglobin is an oxygen-transport protein in red blood cells that interacts with multiple ligands, e.g., oxygen, carbon dioxide, carbon monoxide, and nitric oxide.

View Article and Find Full Text PDF

Pulmonary hypertension associated with lung diseases and/or hypoxia is classified as group 3 in the clinical classification of pulmonary hypertension. The efficacy of existing selective pulmonary vasodilators for group 3 pulmonary hypertension is still unknown, and it is currently associated with a poor prognosis. The mechanisms by which pulmonary hypertension occurs include hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, a decrease in pulmonary vascular beds, endothelial dysfunction, endothelial-to-mesenchymal transition, mitochondrial dysfunction, oxidative stress, hypoxia-inducible factors (HIFs), inflammation, microRNA, and genetic predisposition.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells.

Int J Mol Sci

January 2025

Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.

Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!