Our group has been employing short synthetic peptides, encompassing sequences from the acetylcholine receptor (AChR) alpha-subunit for the analysis of the binding site of the AChR. A 13-mer peptide mimotope, with similar structural motifs to the AChR binding region, was selected by alpha-bungarotoxin (alpha-BTX) from a phage-display peptide library. The solution structure of a complex between this library-lead peptide and alpha-BTX was solved by NMR spectroscopy. On the basis of this NMR study and on structure-function analysis of the AChR binding site, and in order to obtain peptides with higher affinity to alpha-BTX, additional peptides resulting from systematic residue replacement in the lead peptide were designed and characterized. Of these, four peptides, designated high-affinity peptides (HAPs), homologous to the binding region of the AChR, inhibited the binding of alpha-BTX to the AChR with an IC(50) of 2 nM. The solution and crystal structures of complexes of alpha-BTX with HAP were solved, demonstrating that the HAP fits snugly to alpha-BTX and adopts a beta-hairpin conformation. The X-ray structures of the bound HAP and the homologous loop of the acetylcholine binding protein (AChBP) are remarkably similar. Their superposition results in a model indicating that alpha-BTX wraps around the receptor binding-site loop and, in addition, binds tightly at the interface of two of the receptor subunits, where it inserts a finger into the ligand-binding site. Our proposed model explains the strong antagonistic activity of alpha-BTX and accommodates much of the biochemical data on the mode of interaction of alpha-BTX with the AChR.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1254.011DOI Listing

Publication Analysis

Top Keywords

binding site
12
alpha-btx
9
acetylcholine receptor
8
synthetic peptides
8
solution crystal
8
achr binding
8
binding region
8
alpha-btx achr
8
binding
7
achr
7

Similar Publications

Molecular mechanisms of cis-oxygen bridge neonicotinoids to Apis mellifera Linnaeus chemosensory protein: Surface plasmon resonance, multiple spectroscopy techniques, and molecular modeling.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

Honeybees, essential pollinators for maintaining biodiversity, are experiencing a sharp population decline, which has become a pressing environmental concern. Among the factors implicated in this decline, neonicotinoid pesticides, particularly those belonging to the fourth generation, have been the focus of extensive scrutiny due to their potential risks to honeybees. This study investigates the molecular basis of these risks by examining the binding interactions between Apis mellifera L.

View Article and Find Full Text PDF

Precise surgical resection of prostate cancer (PCa) is a significant clinical challenge due to the impact of positive surgical margins on postoperative outcomes. Fluorescence-guided surgery (FGS) enables real-time tumor visualization using fluorescent probes. In this study, we synthesized and evaluated an indocyanine green (ICG)-based PSMA-targeted near-infrared probe, , for intraoperative imaging of PCa lesions.

View Article and Find Full Text PDF

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!