Background Context: Recent advances in neuroscience have opened the door for hope toward prevention and cure of the devastating effects of spinal cord injury (SCI).
Purpose: To highlight the current understanding of traumatic SCI mechanisms, provide information regarding state-of-the-art care for the acute spinal cord-injured patient, and explore future treatments aimed at neural preservation and reconstruction.
Study Design/setting: A selective overview of the literature pertaining to the neuropathophysiology of traumatic SCI is provided with an emphasis on pharmacotherapies and posttraumatic experimental strategies aimed at improved neuropreservation and late neuroregenerative repair.
Methods: One hundred fifty-four peer-reviewed basic science and clinical articles pertaining to SCI were reviewed. Articles cited were chosen based on the relative merits and contribution to the current understanding of SCI neuropathophysiology, neuroregeneration, and clinical SCI treatment patterns.
Results: A better understanding of the pathophysiology and early treatment for the spinal cord-injured patient has led to a continued decrease in mortality, decreased acute hospitalization and complication rates, and more rapid rehabilitation and re-entry into society. Progressive neural injury results from a combination of secondary injury mechanisms, including ischemia, biochemical alterations, apoptosis, excitotoxicity, calpain proteases, neurotransmitter accumulation, lipid peroxidation/free radical injury, and inflammatory responses. Experimental studies suggest that the final posttraumatic neurologic deficit is not only a result of the initial impaction forces but rather a combination of these forces and secondary time-dependent events that follow shortly after the initial impact.
Conclusions: Experimental studies continue to provide a better understanding of the complex interaction of pathophysiologic events after traumatic SCI. Future approaches will involve strategies aimed at blocking the multiple mechanisms of progressive central nervous system injury and promoting neuroregeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1529-9430(01)00029-8 | DOI Listing |
Sci Rep
January 2025
Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany.
Finger amputations following complex hand injuries (CHI) pose a significant challenge in hand surgery due to severe tissue trauma and neurovascular damage, necessitating precise arterial repair. While restoring arterial perfusion is critical, it remains unclear whether reconstructing both proper palmar digital arteries is required for optimal outcomes. This study evaluates whether restoring one or both arteries in finger replantation after complex injuries impacts perfusion and overall outcomes.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.
The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.
View Article and Find Full Text PDFSpinal Cord
January 2025
Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, The Netherlands.
Study Design: Prospective cohort study.
Objectives: To describe barriers to admission to and discharge from an inpatient rehabilitation unit for patients with newly acquired spinal cord injury or disease (SCI/D) and to identify modifiable factors whereby patient flow can be optimized.
Setting: Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!