Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To clarify the apoptotic and survival signal transduction pathways in activated vascular endothelial cells exposed to oxidative stress, the effects of inhibitors of signal transduction on hydrogen peroxide (H(2)O(2))-induced apoptosis in bovine aortic vascular endothelial cells (BAEC) were examined. Treatment of BAEC with 1 mM H(2)O(2) caused increases of DNA fragmentation, p53 expression, Bax/Bcl-2 ratio, and the activities of caspases 3 and 9. The increases of DNA fragmentation, Bax/Bcl-2 ratio, and caspase activities were abrogated by BAPTA-AM (an intracellular Ca(2+) chelator) and N-acetyl-L-cysteine (an antioxidant), and augmented by wortmannin [a phosphatidylinositol 3-kinase (PI3K) inhibitor]. The increase of the intracellular Ca(2+) concentration ([Ca(2+)](i)) observed in H(2)O(2)-stimulated cells was unaffected by wortmannin, suggesting that the potentiating effect of wortmannin on the apoptosis was not due to an alteration of [Ca(2+)](i). H(2)O(2) increased the levels of PI3K activity and Akt phosphorylation. Both were attenuated by wortmannin and, to a lesser extent, by genistein (a tyrosine kinase inhibitor) and suramin (a growth factor receptor inhibitor), but not affected by BAPTA-AM. These results suggest that H(2)O(2) induces Ca(2+)-dependent apoptosis and Ca(2+)-independent survival signals such as redox-regulated activation of PI3K/Akt, which is partly mediated by the activation of growth factor receptors in BAEC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/152308603770380016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!