A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of endothelial nitric oxide synthase in the cerebral hemodynamics after controlled cortical impact injury in mice. | LitMetric

Traumatic brain injury causes a reduction in cerebral blood flow, which may cause additional damage to the brain. The purpose of this study was to examine the role of nitric oxide produced by endothelial nitric oxide synthase (eNOS) in these vascular effects of trauma. To accomplish this, cerebral hemodynamics were monitored in mice deficient in eNOS and wild-type control mice that underwent lateral controlled cortical impact injury followed by administration of either L-arginine, 300 mg/kg, or saline at 5 min after the impact injury. The eNOS deficient mice had a greater reduction in laser Doppler flow (LDF) in the contused brain tissue at the impact site after injury, despite maintaining a higher blood pressure. L-Arginine administration increased LDF post-injury only in the wild-type mice. L-Arginine administration also resulted in a reduction in contusion volume, from 2.4 +/- 1.5 to 1.1 +/- 1.2 mm(3) in wild-type mice. Contusion volume in the eNOS deficient mice was not significantly altered by L-arginine administration. These differences in cerebral hemodynamics between the eNOS-deficient and the wild-type mice suggest an important role for nitric oxide produced by eNOS in the preservation of cerebral blood flow in contused brain following traumatic injury, and in the improvement in cerebral blood flow with L-arginine administration.

Download full-text PDF

Source
http://dx.doi.org/10.1089/089771503770195849DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
l-arginine administration
16
cerebral hemodynamics
12
impact injury
12
cerebral blood
12
blood flow
12
wild-type mice
12
endothelial nitric
8
oxide synthase
8
controlled cortical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!