Inverse scattering problem for optical coherence tomography.

Opt Lett

Applied and Computational Mathematics, 217-50 California Institute of Technology, Pasadena, California 91125, USA.

Published: November 2003

AI Article Synopsis

  • The study focuses on using backscattered laser light and low-coherence interferometry to visualize the internal structure of materials.
  • It leverages interference patterns from low-coherence light and a reference beam to create maps of the refractive index within the sample.
  • The method effectively handles statistical variations and achieves high-quality image reconstructions, even under higher levels of noise than previous research setups.

Article Abstract

We deal with the imaging problem of determining the internal structure of a body from backscattered laser light and low-coherence interferometry. Specifically, using the interference fringes that result when the backscattering of low-coherence light is made to interfere with the reference beam, we obtain maps detailing the values of the refractive index within the sample. Our approach accounts fully for the statistical nature of the coherence phenomenon; the numerical experiments that we present, which show image reconstructions of high quality, were obtained under noise floors exceeding those present for various experimental setups reported in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.002049DOI Listing

Publication Analysis

Top Keywords

inverse scattering
4
scattering problem
4
problem optical
4
optical coherence
4
coherence tomography
4
tomography deal
4
deal imaging
4
imaging problem
4
problem determining
4
determining internal
4

Similar Publications

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.

View Article and Find Full Text PDF

We propose an overview of the Rytov approximation in diffuse optics of biological tissues, for the inverse and forward problems. First, we show a physical interpretation of the Rytov approximation as a type of partial pathlength (named fluence rate partial pathlength) which is distinct from the usual partial pathlength for reflectance measurements. Second, we study the accuracy of the Rytov approximation for the calculation of Jacobians considering absorption perturbations and reflectance measurements.

View Article and Find Full Text PDF

Protein engineering enables the creation of tailor-made proteins for a variety of applications. ImmTACs stand out as promising therapeutics for cancer and other treatments while also presenting unique challenges for stability, formulation, and delivery. We have shown that ImmTACs behave as Janus particles in solution, leading to self-association at low concentrations, even when the average protein-protein interactions suggest that the molecule should be stable.

View Article and Find Full Text PDF

Stem cell grafting can promote glial repair of adult stroke injuries during the subacute wound healing phase, but graft survival and glial repair outcomes are perturbed by lesion severity and mode of injury. To better understand how stroke lesion environments alter the functions of cell grafts, we employed optical coherence tomography (OCT) to longitudinally image mouse cortical photothrombotic ischemic strokes treated with allogeneic neural progenitor cell (NPC) grafts. OCT angiography, signal intensity, and signal decay resulting from optical scattering were assessed at multiple timepoints across two weeks in mice receiving an NPC graft or an injection of saline at two days after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!