Enzymes involved in the biogenesis of the nematode cuticle.

Adv Parasitol

Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK.

Published: December 2003

Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0065-308x(03)53003-2DOI Listing

Publication Analysis

Top Keywords

nematode cuticle
8
parasitic nematodes
8
cuticle collagen
8
cuticle
6
enzymes involved
4
involved biogenesis
4
nematode
4
biogenesis nematode
4
nematodes
4
cuticle nematodes
4

Similar Publications

Research using the model organism nematode has greatly facilitated our understanding of sensory biology, including touch, olfaction, taste, vision and proprioception. While hearing had long been considered to be restricted to vertebrates and some arthropods, we recently discovered that is capable of sensing and responding to airborne sound in a frequency and sound source-size-dependent manner. auditory sensation occurs when airborne sound physically vibrates their external cuticle (skin) to activate the sound-sensitive mechanosensory FLP/PVD neurons via nicotinic acetylcholine receptors (nAChRs), triggering aversive phonotaxis behavior.

View Article and Find Full Text PDF

A new species of Travassos 1917 (Nematoda: Heligmonellidae) in small rodents (Cricetidae and Heteromyidae) from Mexico.

J Helminthol

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n (1900), La Plata, Argentina.

A new species of (Nematoda: Heligmonellidae) is described from the small rodents (Cricetidae: Tylomyinae) and (Heteromyidae: Heteromyinae) in the Yucatan Peninsula, Mexico, based on studies of light and scanning electron microscopy, and partial sequences of COI, ITS1 and 28S rRNA. n. sp.

View Article and Find Full Text PDF

1,2,4-Oxadiazole-5-Carboxylic Acid Derivatives as Safe Seed Treatment Nematicides.

J Agric Food Chem

December 2024

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.

Plant-parasitic nematodes pose a significant threat to crop production, impacting agricultural yields. In the search for new nematicides, a series of 1,2,4-oxadiazole-5-carboxylic acid derivatives containing amide or ester groups were designed and synthesized using an activity-based approach. Bioassay results showed that some compounds exhibited good nematicidal activity against , , and .

View Article and Find Full Text PDF

Ascariasis, caused by the parasitic roundworm Ascaris lumbricoides, is a major public health issue, especially in developing nations such as Pakistan. It impacts millions, causing significant morbidity through starvation, stunted growth in children, and a variety of gastrointestinal issues. The taxonomy of the Ascaris genus, notably the distinction between A.

View Article and Find Full Text PDF

This study presents a comprehensive methodology for the synthesis, characterization, and evaluation of selenium nanoparticles (SeNPs) for their anthelmintic properties against Trichinella spiralis. SeNPs were synthesized via a chemical reduction method, with a color change from clear white to brownish-red indicating nanoparticle formation. X-ray diffraction (XRD) analysis revealed broad peaks at 2θ ranges of 20-33° and 48-58°, confirming the semi-crystalline nature of the nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!