Objective: We hypothesized that normal fetal breathing, not acute asphyxial gasping, results in the movement of iron dextran from the amniotic cavity into the fetal lungs. In addition, the amount of iron dextran moving into the fetal lungs is cumulative with time.

Study Design: Twelve pregnant New Zealand White rabbits at 25 days of gestation were sedated and underwent ultrasound-guided injections of iron dextran into the amniotic cavities of the rabbit fetuses in both horns of each pregnant doe. Oxygen saturation was maintained at >90% in the pregnant does. The 12 does were then equally assigned to four groups on the basis of the duration of fetal exposure to the dextran (0, 8, 16, and 24 hours). At the end of each time point, one half of the fetuses received an intracardiac injection of potassium chloride to induce gasping just before necropsy. Gasping was confirmed by ultrasound scanning. At necropsy, the fetal lungs were evaluated grossly and underwent histomorphometry for iron distribution and quantification in the fetal airways.

Results: In the animals that received iron dextran, there was no significant difference in iron accumulation at any time point between those animals that did and did not receive potassium chloride, which suggests that acute gasping does not increase the accumulation of amniotic fluid substances in the lungs. The amount of iron in the fetal airways increased significantly with progressive length of exposure.

Conclusion: We conclude that normal fetal breathing, not acute asphyxial gasping, resulted in the movement of intra-amniotic iron dextran into the fetal lungs and that the amount of substances that move into the fetal lungs accumulated with time.

Download full-text PDF

Source
http://dx.doi.org/10.1067/s0002-9378(03)00719-1DOI Listing

Publication Analysis

Top Keywords

iron dextran
24
fetal lungs
20
fetal breathing
12
fetal
10
iron
9
intra-amniotic iron
8
normal fetal
8
breathing acute
8
acute asphyxial
8
asphyxial gasping
8

Similar Publications

Iron overload in transfusion-dependent thalassemia patients represents a significant public health challenge due to its high mortality rate and risks of severe complications. Therefore, developing safe and effective therapeutic modalities for managing iron overload is critical, as current animal models inadequately replicate human conditions. The aim of this study was to investigate the effects of intravenous iron dextran on hepatocyte morphology, liver iron concentration, and serum iron profile changes as a model for hemochromatosis.

View Article and Find Full Text PDF

A mitochondrion-targeted poly(N-isopropylacrylamide-coacrylic acid) nanohydrogel with a fluorescent bioprobe for ferrous ion imaging in vitro and in vivo.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310007, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, China. Electronic address:

An imbalance in iron homeostasis contributes to mitochondrial dysfunction, which is closely linked to the pathogenesis of various diseases. Herein, we developed a nanosensor for detecting mitochondrial ferrous ions in vitro and in vivo. A poly(N-isopropylacrylamine)-coacrylic acid nanohydrogel was synthesized, and ferrous ions were detected using the fluorescent probe FeRhonox-1 embedded within it.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Effect of intramuscular treatment with different iron dextran dosages and non-inferiority study to gleptoferron.

Acta Vet Scand

January 2025

Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 2, 1870, Frederiksberg C, Denmark.

Background: Prevention of iron deficiency in suckling piglets by intramuscular injection of a standardized amount of iron dextran or gleptoferron in the first days of life can lead to over- or underdosage with respective health risks. Currently, combined iron products containing an active substance against coccidia are also used on farms. When using a combination product targeting two diseases, an adjustment of the necessary amount of iron to prevent anaemia in the frame of a farm-specific treatment protocol is not possible.

View Article and Find Full Text PDF

Iron overload has been associated with cerebrovascular disease and cognitive impairment in β-thalassaemia patients, typically appearing earlier than in the general population. However, the mechanisms of iron overload on cerebrovascular pathology remain unclear. This study investigated the effects of heavy iron overload on the blood-brain barrier and neurohistology, particularly in the CA3 region of hippocampus and its contribution to cognitive impairment in β-thalassaemia mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!