Input organization of multifunctional motion-sensitive neurons in the blowfly.

J Neurosci

Department of Systems and Computational Neurobiology, Max-Plank-Institute of Neurobiology, 82152 Martinsried, Germany.

Published: October 2003

Flies rely heavily on visual motion cues for course control. This is mediated by a small set of motion-sensitive neurons called lobula plate tangential cells. A single class of these, the centrifugal horizontal (CH) neurons, play an important role in two pathways: figure-ground discrimination and flow-field selectivity. As was recently found, the dendrites of CH cells are electrically coupled with the dendritic tree of another class of neurons sensitive to horizontal image motion, the horizontal system (HS) cells. However, whether motion information arrives independently at both of these cells or is passed from one to the other is not known. Here, we examine the ipsilateral input circuitry to HS and CH neurons by selective laser ablation of individual interneurons. We find that the response of CH neurons to motion presented in front of the ipsilateral eye is entirely abolished after ablation of HS cells. In contrast, the motion response of HS cells persists after the ablation of CH cells. We conclude that HS cells receive direct motion input from local motion elements, whereas CH cells do not; their motion response is driven by HS cells. This connection scheme is discussed with reference to how the dendritic networks involved in figure-ground detection and flow-field selectivity might operate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740885PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-30-09805.2003DOI Listing

Publication Analysis

Top Keywords

cells
10
motion-sensitive neurons
8
motion
8
flow-field selectivity
8
cells motion
8
ablation cells
8
motion response
8
neurons
6
input organization
4
organization multifunctional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!