1. The synthesis of dibutylchloromethyltin chloride, a new covalent inhibitor of the mitochondrial ATP synthase [oligomycin-sensitive ATPase (adenosine triphosphatase)] complex is described, together with a method for preparing dibutylchloro[(3)H]methyltin chloride. 2. Studies with the yeast mitochondrial oligomycin-sensitive ATPase complex show that dibutylchloromethyltin chloride inhibits both the membrane-bound enzyme and also the purified Triton X-100-dispersed preparation. 3. F(1)-ATPase is not inhibited even at 500nmol of dibutylchloromethyltin chloride/mg of protein, and the general inhibitory properties are similar to those of triethyltin, oligomycin and dicyclohexylcarbodi-imide, known energy-transfer inhibitors of oxidative phosphorylation. 4. Binding studies with yeast submitochondrial particles show that dibutylchloromethyltin chloride antagonizes the binding of triethyl[(113)Sn]tin, indicating that there is an interaction between the two inhibitor-binding sites. 5. Unlike triethyltin, inhibition by dibutylchloromethyltin chloride is due to a covalent interaction which titrates a component of the inner mitochondrial membrane present at a concentration of 8-9nmol/mg of protein. 6. All of the labelled component can be extracted with chloroform/methanol (2:1, v/v), and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the chloroform/methanol extract indicates that the labelled component has an apparent mol.wt. of 6000-8000. However, t.l.c. reveals the presence of only one labelled component which is lipophilic and non-protein and is distinct from the free inhibitor, mitochondrial phospholipids and the dicyclohexylcarbodi-imide-binding protein (subunit 9). 7. Inhibition of mitochondrial ATPase and oxidative phosphorylation is correlated with specific interaction with a non-protein lipophilic component of the mitochondrial inner membrane which is proposed to be a co-factor or intermediate of oxidative phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1165045PMC
http://dx.doi.org/10.1042/bj1660593DOI Listing

Publication Analysis

Top Keywords

dibutylchloromethyltin chloride
20
chloride covalent
12
oxidative phosphorylation
12
labelled component
12
covalent inhibitor
8
inhibitor mitochondrial
8
studies yeast
8
dibutylchloromethyltin
6
mitochondrial
6
chloride
5

Similar Publications

The properties of the components of the mitochondrial ATPase which interact with modulators of energy transduction have been examined. The chromatographic behavior and the size of the components which bind trialkyl tins, carbodiimides and uncouplers, have been shown to be different. However, they all appear to be proteolipids with apparent molecular weights around 10,000.

View Article and Find Full Text PDF

Preincubation of coupled submitochondrial particles with low concentrations of triorganotin compounds results in complete inhibition of the oligomycin-sensitive ATPase activity without any significant effect on the rate of succinate-driven ATP synthesis. The residual ATP synthetic activity is inhibited by oligomycin and uncouplers. The differential inhibition of ATP synthesis and hydrolysis by the triorganotin compounds examined suggests that the two processes are not 'mirror images' of each other, but that they occur through different routes and that the F1F0-ATPase is at least bifunctional.

View Article and Find Full Text PDF

The oxidative phosphorylation inhibitor DBCT (dibutylchloromethyltin chloride) inhibits state 3 respiration at a concentration less than that which stimulates K+ flux into respiring rat liver mitochondria. Inhibition of ADP-stimulated respiration by DBCT can be reversed or blocked by the dithiol 2,3-dimercaptopropanol. The data are consistent with previous suggestions that DBCT may interact with the ATP synthase via reaction with a dithiol group.

View Article and Find Full Text PDF

Respiration-dependent K+ fluxes across the limiting membranes of isolated rat liver mitochondria, measured by means of 42K, are stimulated by the oxidative phosphorylation inhibitor dibutylchloromethyltin chloride (DBCT). A lack of effect of Cl- concentration indicates that the stimulation of K+ flux by DBCT is not attributable to Cl-/OH- exchange activity. The mercurial mersalyl was previously shown to stimulate respiration-dependent K+ influx.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!