The sucrose binding protein (SBP) from soybean has been implicated as an important component of the sucrose uptake system. Two SBP genomic clones, gsS641.1 and gsS641.2, which correspond to allelic forms of the GmSBP2/S64 gene, have been isolated and characterized. As a member of the seed storage protein superfamily, it has been shown that the SBP gene structure is similar to vicilin genes with intron/exon boundaries at conserved positions. Fluores cence in situ hybridization (FISH) suggested that the soybean SBP gene family is represented by at least two non-allelic genes corresponding to the previously isolated GmSBP1 and GmSBP2/S64 cDNAs. These two cDNAs share extensive sequence similarity but are located at different loci in the soybean genome. To investigate transcriptional activation of the GmSBP2 gene, 2 kb 5'-flanking sequences of gsS641.1 and gsS641.2 were fused to the beta-glucuronidase (GUS) reporter gene and to the green fluorescent protein (GFP) reporter gene and inde pendently introduced into Nicotiana tabacum by Agrobacterium tumefaciens-mediated transformation. The SBP2 promoter directed expression of both GUS and GFP reporter genes with high specificity to the phloem of leaves, stems and roots. Thus, the overall pattern of SBP-GUS or SBP-GFP expression is consistent with the involvement of SBP in sucrose translocation-dependent physiological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erg301DOI Listing

Publication Analysis

Top Keywords

sucrose binding
8
binding protein
8
gene
8
gene family
8
sbp2 promoter
8
gss6411 gss6412
8
sbp gene
8
reporter gene
8
gfp reporter
8
sbp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!