The membrane composition and the isoprenoid pathway metabolites important in maintaining cell membrane integrity was studied in neurological and psychiatric disorders. The results indicate alteration in cholesterol:phospholipid ratio of the RBC membrane which is increased in glioma, schizophrenia, and bipolar mood disorder (MDP); decreased in multiple sclerosis and Parkinson's disease; and not significantly altered in epilepsy. The concentration of total glycosaminoglycans (GAG), hexose, and fucose decreased in the RBC membrane and increased in the serum. The RBC membrane Na+-K+ ATPase activity was reduced and serum HMG CoA reductase activity was increased. There were increased serum levels of digoxin, cholesterol, and dolichol and decreased levels of ubiquinone. The serum magnesium and tyrosine levels were reduced and tryptophan increased. The results indicate a defect in membrane formation and a decreased membrane Na+-K+ ATPase activity in all the disorders studied. The results are discussed, and a hypothesis regarding the relationship between these disorders and defective membrane architecture and membrane Na+-K+ ATPase inhibition is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207450390240059 | DOI Listing |
Genet Epidemiol
January 2025
Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. In vivo conversion of omega-3 and omega-6 PUFAs from short- to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase (FADS1), delta-6 desaturase (FADS2), and elongase (ELOVL2) on changes in RBC and plasma biomarkers.
View Article and Find Full Text PDFJ Magn Reson
January 2025
Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:
Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Intensive Care Unit, Taizhou First People's Hospital, Taizhou, 318020, ZJ, China.
This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil. Electronic address:
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus.
View Article and Find Full Text PDFExtracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!