In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome.

Biomaterials

National Research Lab for Drug and Gene Delivery, College of Pharmacy, Seoul National University, San 56-1, Shinlim-Dong, Kwanak-Gu, Seoul 151-742, South Korea.

Published: January 2004

Cationic lipids have been often used as one of the major components in making most promising non-viral gene delivery systems, whereas sodium cholate, a surfactant so-called edge activator has been used in preparing ultradeformable and ultraflexible liposomes called Transfersomes. Using both a cationic lipid, DOTAP and sodium cholate, a novel formulation of ultradeformable cationic liposome (UCL) has been prepared. The average particle size of this formulation was approximately 80 nm. The physical and chemical stabilities at two different temperatures (4 degrees C and 20 degrees C) were also evaluated for 60 days. The ultradeformability of new formulation was also assessed, and it has been proved that the formulation is deformable. In vitro transfection efficiency of plasmid DNA/UCL was assessed by the expression of green fluorescent protein (GFP) in four cell lines, OVCAR-3 (human ovarian carcinoma cells), HepG2 (human hepatoma cells), H-1299 (human lung carcinoma cells) and T98G (human brain carcinoma cells). The optimal ratio of DNA to liposome for maximal transfection efficiency was 1:14 (w/w) in all the cell lines except for the human brain carcinoma cells. The same formulation was tested for in vivo transfection efficiency and its retention time within the organs by applying the DNA/UCL complexes on hair-removed dorsal skin of mice non-invasively. It was found that genes were transported into several organs for 6 days once applied on intact skin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0142-9612(03)00534-9DOI Listing

Publication Analysis

Top Keywords

transfection efficiency
16
carcinoma cells
16
vivo transfection
8
ultradeformable cationic
8
cationic liposome
8
sodium cholate
8
cell lines
8
human brain
8
brain carcinoma
8
formulation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!