Immunotherapy against murine experimental visceral leishmaniasis with the FML-vaccine.

Vaccine

Instituto de Microbiologia, Professor Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Ilha do Fundão, CP 68040, CEP 21941-590 Rio de Janeiro, Brazil.

Published: December 2003

The fucose mannose ligand (Leishmania donovani FML)-saponin vaccine has earlier shown its immunoprophylactic potential against visceral leishmaniasis in the CB hamster (87.7% of parasite load reduction), Balb/c (84.4%) and Swiss albino mouse (85-93%) models. In this investigation its specific immunotherapeutic efficacy against L. donovani infection in Balb/c mice was studied. The effects of vaccine treatment on the humoral response, delayed type of hypersensitivity to promastigote lysate (DTH), cytokine levels in sera and reduction of the liver parasitic load of L. donovani infected mice, were examined. The types and subtypes of anti-FML antibodies increased significantly in the vaccinees over the saline and saponin controls. As expected for a saponin vaccine, the highest ratios were found in relation to IgG1, IgG2a and IgG2b (4.4, 5 and 2.5, respectively). The DTH response and the in vitro ganglion cell proliferative response against FML antigen were also significantly higher than controls (P<0.005). Concomitantly, an impressive and specific decrease of liver parasitic burden was detected only in vaccine-treated animals (94.7%). Our results indicate that the therapeutic FML-vaccine has a potent effect on modulation of the murine infection leading to the reduction of parasitic load and signs of disease, being a new potential tool in the therapy and control of visceral leishmaniasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0264-410x(03)00527-9DOI Listing

Publication Analysis

Top Keywords

visceral leishmaniasis
8
immunotherapy murine
4
murine experimental
4
experimental visceral
4
leishmaniasis fml-vaccine
4
fml-vaccine fucose
4
fucose mannose
4
mannose ligand
4
ligand leishmania
4
leishmania donovani
4

Similar Publications

Background: COVID-19 is a pandemic involving coinfection with other opportunistic microorganisms, including parasites such as Leishmania infantum. The present study aimed to determine the frequency of L. infantum infection and its role in disease and mortality among symptomatic COVID-19 patients in comparison with the non-COVID-19 control group in the endemic area of visceral leishmaniasis (VL) in Iran.

View Article and Find Full Text PDF

Background: Visceral leishmaniosis (VL) is the most severe form of human leishmaniosis, with an estimated 95% case fatality if left untreated. Dogs act as peridomestic reservoir hosts for the protozoan parasite Leishmania infantum, a causative agent for human leishmaniosis, endemic throughout the Mediterranean basin. To assure consistent and accurate surveillance of canine infection and prevent transmission to people, consistent diagnosis of canine L.

View Article and Find Full Text PDF

Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae.

View Article and Find Full Text PDF

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

The analysis of the volatile compounds released by biological samples represents a promising approach for the non-invasive diagnosis of a disease. The present study, focused on a population of dogs infected with canine leishmaniasis, aimed to decipher the volatolomic profile associated with this disease in dogs, which represent the main animal reservoir for Leishmania pathogen transmission to humans. The volatiles emitted by the breath and hair of dogs were analysed employing the gas chromatography-mass spectrometry (GC-MS) technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!