A quantitative and sensitive measure of human immunodeficiency virus type 1 (HIV-1) replication is quantitative real-time polymerase chain reaction (PCR). Real-time PCR using SYBR green I and oligonucleotide primers that amplify early, intermediate, and late products of reverse transcription were optimized to measure HIV-1 replication of clade A, B, C, and D HIV-1 isolates in peripheral blood lymphocytes and in both transformed and viral-transformed CD4+ lymphocyte cell lines. Real-time PCR can detect HIV-1 replication as early as 1 hr postinfection and demonstrates that in established cell lines cDNA can be detected as early as 4 hr postinfection. The first round of HIV-1 replication in established cell lines is complete between 12 and 24 hr postinfection. Furthermore, real-time PCR can detect HIV-1 replication in fewer than 0.1% of cells. Patient isolates replicated at different rates in peripheral blood lymphocytes, with viral cDNA peaking between 48 and 120 hr, depending on the virus being studied. Real-time PCR differentiated the mechanisms of action of drugs targeted at HIV-1 entry, reverse transcription, and proteolytic processing and identified differences in the kinetics of reverse transcription between zidovudine-sensitive and zidovudine-resistant HIV in the presence of zidovudine. In summary, real-time PCR using SYBR green I dye is a sensitive, quantitative, and reproducible measure of replication kinetics for a variety of group M HIV-1 isolates.

Download full-text PDF

Source
http://dx.doi.org/10.1089/088922203322493030DOI Listing

Publication Analysis

Top Keywords

hiv-1 replication
20
real-time pcr
20
sybr green
12
reverse transcription
12
cell lines
12
replication kinetics
8
human immunodeficiency
8
real-time polymerase
8
polymerase chain
8
chain reaction
8

Similar Publications

Antiviral Agents: Structural Basis of Action and Rational Design.

Subcell Biochem

December 2024

Department of Biomedical Sciences, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.

During the last forty years, significant progress has been made in the development of novel antiviral drugs, mainly crystallizing in the establishment of potent antiretroviral therapies and the approval of drugs eradicating hepatitis C virus infection. Although major targets of antiviral intervention involve intracellular processes required for the synthesis of viral proteins and nucleic acids, a number of inhibitors blocking virus assembly, budding, maturation, entry, or uncoating act on virions or viral capsids. In this review, we focus on the drug discovery process while presenting the currently used methodologies to identify novel antiviral drugs by means of computer-based approaches.

View Article and Find Full Text PDF

The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!