The primary function of cobalamin (Cbl; vitamin B12) is the formation of red blood cells and the maintenance of a healthy nervous system. Before cells can utilise dietary Cbl, the vitamin must undergo cellular transport using two distinct receptor-mediated events. First, dietary Cbl bound to gastric intrinsic factor (IF) is taken up from the apical pole of ileal epithelial cells via a 460 kDa receptor, cubilin, and is transported across the cell bound to another Cbl-binding protein, transcobalamin II (TC II). Second, plasma TC II-Cbl is taken up by cells that need Cbl via the TC II receptor (TC II-R), a 62 kDa protein that is expressed as a functional dimer in cellular plasma membranes. Human Cbl deficiency can develop as a result of acquired or inherited dysfunction in either of these two transmembrane transport events. This review focuses on the biochemical, cellular and molecular aspects of IF and TC II and their cell-surface receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1462399403006422 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.
Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.
Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.
Proc Natl Acad Sci U S A
January 2025
Department of Pathology, University of California San Diego, La Jolla, CA 92093.
We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Objective: To assess CXC chemokine receptor 5 (CXCR5) circulating DNA methylation differences in autoimmune rheumatic diseases and their relation with clinical features.
Methods: Targeted methylation sequencing was performed using peripheral blood from 164 rheumatoid arthritis (RA), 30 systemic lupus erythematosus (SLE), 30 ankylosing spondylitis (AS), 30 psoriatic arthritis (PsA), 24 Sjögren's syndrome (SS) patients, and 30 healthy controls (HC).
Results: Significant differences in CXCR5 cg19599951 methylation were found between RA and HC, as well as AS and SLE.
J Cell Biochem
January 2025
Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
tRNA-derived fragments (tRFs) are a newly recognized class of small noncoding RNAs (sncRNAs) that play significant roles in various diseases. The Wnt pathway plays a key role in various physiological processes such as embryonic development, tissue renewal and regeneration. In the regulation of Wnt/β-catenin, Forkhead box k1(FOXK1), Frizzled class receptor 3 (FZD3), and Wnt5b can be targeted and inhibited by three tRFs: tRF3008A targets FOXK1 to inhibit colorectal cancer (CRC), 5'-tiRNAVal targets FZD3 to inhibit breast cancer (BrC), and tRF-22-8BWS7K092 targets Wnt5b to induce ferroptosis in lung cells.
View Article and Find Full Text PDFBiol Open
January 2025
Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.
In the developing mouse ventral spinal cord, HES5, a transcription factor downstream of Notch signalling, is expressed as evenly spaced clusters of high HES5-expressing neural progenitor cells along the dorsoventral axis. While Notch signalling requires direct membrane contact for its activation, we have previously shown mathematically that contact needs to extend beyond neighbouring cells for the HES5 pattern to emerge. However, the presence of cellular structures that could enable such long-distance signalling was unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!