Unlabelled: Genome-wide QTL analysis for bone density, structure, and biomechanical phenotypes was performed in 999 (B6xC3H)F2 mice. Multivariate phenotypes were also derived to test for pleiotropic QTL effects. Highly significant QTLs were detected with pleiotropic effects on many of these phenotypes, and QTLs with unique effects on specific phenotypes were found as well.

Introduction: The inbred C57BL/6J (B6) and C3H/HeJ (C3H) mouse strains were previously shown to segregate quantitative trait loci (QTLs) for femoral bone density.

Materials And Methods: The 999 s filial (F2) mouse progeny were further phenotyped for measures of femoral biomechanics (load to failure, Fu; work to failure, U; stiffness, S), structure (polar moment of inertia, Ip; moment of inertia ratio, Ir), and more specific femoral midshaft bone density measures (cortical and total vBMD). Two novel multivariate phenotypes were computed using principal component analysis, thus aiding in the exploration of pleiotropic effects of the QTLs detected.

Results And Conclusions: Results of a genome-wide analysis provided strong evidence of pleiotropic QTL effects on chromosome 4, with six of the seven primary phenotypic measures, representing femoral biomechanics, density, and structure, producing LOD scores greater than 8. Chromosomes 1, 8, 13, and 14 were also identified as harboring QTLs that affect phenotypes in two of the three aspects of bone properties. QTLs uniquely contributing to variability in biomechanical measures were identified on chromosomes 10 and 12, whereas a QTL solely affecting structure was found on chromosome 17. Analysis of the evidence for pleiotropic effects using principal component analysis revealed pleiotropic QTLs on chromosomes 4 and 14, influencing nearly all the bone phenotypes measured and revealed QTLs on chromosomes 1, 8, 13, and 17 with pleiotropic effects restricted to either density or the structure and stiffness phenotypes. The use of multivariate phenotypes has allowed us to identify pleiotropic effects of several QTLs previously linked in studies of other mouse strains and in human studies of bone mineral density and femoral structure, which will provide important insight regarding the importance of allelic variation on the entire skeleton.

Download full-text PDF

Source
http://dx.doi.org/10.1359/jbmr.2003.18.10.1758DOI Listing

Publication Analysis

Top Keywords

pleiotropic effects
20
femoral biomechanics
12
mouse strains
12
density structure
12
multivariate phenotypes
12
phenotypes
9
qtls
9
c57bl/6j c3h/hej
8
bone density
8
pleiotropic
8

Similar Publications

The global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including an increased risk of Alzheimer's disease (AD) among older adults. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear. This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic association between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA) cohorts, and the possibility of a causal effect of COVID-19 on AD.

View Article and Find Full Text PDF

The protein encoded by the gene ( ) plays an essential role in early gametogenesis by complexing with the gene product of ( ) to promote germline stem cell daughter differentiation in males and females. Here, we compared the AlphaFold2 and AlphaFold Multimer predicted structures of Bam protein and the Bam:Bgcn protein complex between , where is necessary in gametogenesis to that in , where it is not. Despite significant sequence divergence, we find very little evidence of significant structural differences in high confidence regions of the structures across the four species.

View Article and Find Full Text PDF

Unlabelled: Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.

View Article and Find Full Text PDF

Introduction: Persistent elevation of biomarkers associated with endothelial dysfunction in convalescent COVID-19 patients has been linked to an increased risk of long-term cardiovascular complications, including long COVID syndrome. Sulodexide, known for its vascular endothelial affinity, has demonstrated pleiotropic protective properties. This study aims to evaluate the impact of sulodexide on serum levels of endothelial dysfunction biomarkers in patients during the convalescent phase of COVID-19.

View Article and Find Full Text PDF

Cerebral perfusion alterations in healthy young adults due to two genetic risk factors of Alzheimer's disease: APOE and MAPT.

J Cereb Blood Flow Metab

January 2025

Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Heath, University of Sheffield, Sheffield, UK.

Functional brain changes such as altered cerebral blood flow occur long before the onset of clinical symptoms in Alzheimer's disease (AD) and other neurodegenerative disorders. While cerebral hypoperfusion occurs in established AD, middle-aged carriers of genetic risk factors for AD, including APOE ε4, display regional hyperperfusion due to hypothesised pleiotropic or compensatory effects, representing a possible early biomarker of AD and facilitating earlier AD diagnosis. However, it is not clear whether hyperperfusion already exists even earlier in life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!