The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0925-4005(03)00338-1 | DOI Listing |
PLoS One
January 2025
Division of Kinesiology and Health, University of Wyoming, Laramie, WY, United States of America.
The inversion effect in biological motion suggests that presenting a point-light display (PLD) in an inverted orientation impairs the observer's ability to perceive the movement, likely due to the observer's unfamiliarity with the dynamic characteristics of inverted motion. Vertical dancers (VDs), accustomed to performing and perceiving others to perform dance movements in an inverted orientation while being suspended in the air, offer a unique perspective on this phenomenon. A previous study showed that VDs were more sensitive to the artificial inversion of PLDs depicting dance movements when compared to typical and non-dancers if given sufficient dynamic information.
View Article and Find Full Text PDFMikrochim Acta
January 2025
College of Chemistry, Chemical Engineering & Environmental Science, Minnan Normal University, Zhangzhou, 363000, China.
The detection of cysteine (Cys) and homocysteine (Hcy) in biological fluids has great significance for early diagnosis, including Alzheimer's and Parkinson's disease. The simultaneous determination of Cys and Hcy with a single probe is still a huge challenge. To enlarge the differences in space structure (line and ring) and energy (-721.
View Article and Find Full Text PDFAtten Percept Psychophys
January 2025
Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Ave, Columbus, OH, 43210, USA.
Humans can learn to attentionally suppress salient, irrelevant information when it consistently appears at a predictable location. While this ability confers behavioral benefits by reducing distraction, the full scope of its utility is unknown. As people locomote and/or shift between task contexts, known-to-be-irrelevant locations may change from moment to moment.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelsstraße 30, D-52074, Aachen, Germany.
Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.
View Article and Find Full Text PDFSci Rep
January 2025
Science and Technology on Vacuum and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730000, China.
The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!