EGF mediates protection against Fas-induced apoptosis by depleting and oxidizing intracellular GSH stocks.

J Cell Physiol

Centre de recherche, Centre hospitalier de l'Université de Montréal-Hôpital Saint-Luc, and Déartement de pharmacologie, Université de Montréal, Québec, Canada.

Published: January 2004

Several pieces of evidence have demonstrated the importance of reduction/oxidation (redox) signaling in biological processes, including sensitivity toward apoptosis. In parallel, it was recently reported that growth factors induce the generation of reactive oxygen species (ROS). Therefore, we tested the hypothesis that the anti-apoptotic effect of epidermal growth factor (EGF) was mediated by changes in the redox state of hepatocytes through changes in GSH stocks. Isolated mouse hepatocytes were cultured and exposed to anti-Fas stimulation in order to induce apoptosis. Cell death by apoptosis was assessed by Hoechst 33258 staining and by measuring caspase-3 proteolysis activity. Cell treatment with EGF significantly decreased total (GSx) and reduced (GSH) glutathione levels in the presence and the absence of anti-Fas. Furthermore, glutathione reductase activity was lower in EGF-treated cultures (by 28%) as compared to untreated cultures which lead to a significant decline in GSH/GSx ratio. These effects were found to be EGF-receptor tyrosine kinase activity dependent. Co-stimulation of cells with anti-Fas and EGF attenuated caspase-3 activation and cell death by apoptosis by 70%. GSH monoethylester (GSHmee) significantly attenuated the effect of EGF on GSH and GSH/GSx ratio. It caused an increase in caspase-3 activation and in the percentage of apoptotic cells in anti-Fas + EGF-treated cells, thus resulting in a 53% decline in the protective effect of EGF. In conclusion, EGF induces a significant and specific depletion and oxidization of intracellular GSH, paralleled by a protection against Fas-induced apoptosis. GSH repenishment partly counteracted these effects suggesting that GSH depletion contributed to the protective effect of EGF against caspase-3 activation and cell death by apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.10389DOI Listing

Publication Analysis

Top Keywords

cell death
12
death apoptosis
12
caspase-3 activation
12
egf
8
protection fas-induced
8
fas-induced apoptosis
8
gsh
8
intracellular gsh
8
gsh stocks
8
gsh/gsx ratio
8

Similar Publications

LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models.

J Clin Invest

January 2025

Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

Background: BERIL-1 was a randomized phase 2 study that studied paclitaxel with either buparlisib, a pan-class I PIK3 inhibitor, or placebo in patients with recurrent or metastatic (R/M) head and neck squamous cell cancer (HNSCC). Considering the therapeutic paradigm shift with immune checkpoint inhibitors (ICIs) now approved in the first-line setting, we present an updated immunogenomic analysis of patients enrolled in BERIL-1, including patients with immune-infiltrated tumors.

Objective: The objective of this study was to identify biomarkers predictive of treatment efficacy in the context of the post-ICI therapeutic landscape.

View Article and Find Full Text PDF

Study on the Synergistic Effect of Klotho and KRAS on Reducing Ferroptosis After Myocardial Infarction by Regulating RAP1/ERK Signaling Pathway.

Appl Biochem Biotechnol

January 2025

Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.

Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!