Wing design and morphology of the harbor porpoise dorsal fin.

J Morphol

Crimean State Medical University, Lenin Boulevard 5-7, Simferopol 95006, Ukraine.

Published: December 2003

The correlation between skin structure and hydrodynamic design of the dorsal fin of the harbor porpoise (Phocoena phocoena) was examined. For the study of fin morphology and geometry, a scheme of sampling representing a two-parameter mesh on the fin surface was used. At each data point the thickness of the epidermis, papillary and subpapillary layers of the dermis, the ligamentous layer of the fin, as well as the angle formed by the direction of dermal ridges and the fin root chord were measured. On the basis of fin cross-sections the three-dimensional surface models of the fin in a 1 : 1 scale were created with a CAD program. The shape of the model was evaluated by the wing and hydrofoil parameters (angle of leading edge sweep, leading edge radius, maximum thickness of the fin cross-section, and position of maximum thickness from the leading edge). Hydrodynamic performance of the fin cross-sections was studied with a CFD program. Regional variability of the parameters of morphology was compared with spanwise variability of the parameters of cross-sectional geometry. It was found that skin structure parameters correlate with the hydrodynamically relevant parameters of the fin and fin cross-sections. Regularities of skin structure of the harbor porpoise dorsal fin are considered indirect evidence of the adaptation of porpoise skin to the fin flow.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.10135DOI Listing

Publication Analysis

Top Keywords

fin
14
harbor porpoise
12
dorsal fin
12
skin structure
12
fin cross-sections
12
leading edge
12
porpoise dorsal
8
maximum thickness
8
variability parameters
8
parameters
5

Similar Publications

In the military, combat wound infections can progress rapidly to life-threatening sepsis. The discovery of effective small-molecule drugs to prevent and/or treat sepsis is a priority. To identify potential sepsis drug candidates, we used an optimized larval zebrafish model of endotoxicity/sepsis to screen commercial libraries of drugs approved by the U.

View Article and Find Full Text PDF

Background And Objectives: Fibromyalgia has many unmet needs relating to treatment, and the delivery of effective and evidence-based healthcare is lacking. We analyzed social media conversations to understand the patients' perspectives on the lived experience of fibromyalgia, factors reported to trigger flares of pain, and the treatments being discussed, identifying barriers and opportunities to improve healthcare delivery.

Methods: A non-interventional retrospective analysis accessed detail-rich conversations about fibromyalgia patients' experiences with 714,000 documents, including a fibromyalgia language tag, which were curated between May 2019 and April 2021.

View Article and Find Full Text PDF

Time-dependent diffusion MRI and kinetic heterogeneity as potential imaging biomarkers for diagnosing suspicious breast lesions with 3.0-T breast MRI.

Magn Reson Imaging

January 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Da Hua Road, Dong Dan, Beijing 100730, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.

Purpose: This study aimed to evaluate the diagnostic efficacy of time-dependent diffusion magnetic resonance imaging (td-dMRI) and dynamic contrast-enhanced MRI (DCE-MRI)-based kinetic heterogeneity in differentiating suspicious breast lesions (categorised as Breast Imaging Reporting and Data System 4 or 5).

Methods: This prospective study included 51 females with suspicious breast lesions who underwent preoperative breast MRI, including DCE-MRI and td-dMRI. Six kinetic parameters, namely peak, persistent, plateau, washout component, predominant curve type, and heterogeneity, were extracted from the DCE series using MATLAB and SPM software.

View Article and Find Full Text PDF

A low-cost and renewable magnetite-pine bark (MPB) sorbent was evaluated in continuous-flow systems for the removal of various pharmaceuticals from municipal wastewater effluent following membrane bioreactor (MBR) treatment. A 33-day small-scale column test (bed volume: 791 cm) was conducted using duplicate columns of biochar (BC, Novocarbo) and activated carbon (AC, ColorSorb) as reference for two columns of BC and MPB in order to compare the efficiency of AC and MPB. After the small-scale column test, the pharmaceutical concentrations were generally below the detection limit.

View Article and Find Full Text PDF

Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.

We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!