Previous studies have suggested that the actin-based centripetal flow process in sea urchin coelomocytes is the result of a two-part mechanism, actin polymerization at the cell edge coupled with actomyosin contraction at the cell center. In the present study, we have extended the testing of this two-part model by attempting to stimulate actomyosin contraction via treatment of coelomocytes with the phosphatase inhibitor Calyculin A (CalyA). The effects of this drug were studied using digitally-enhanced video microscopy of living cells combined with immunofluorescent localization and scanning electron microscopy. Under the influence of CalyA, the coelomocyte actin cytoskeleton undergoes a radical reorganization from a dense network to one displaying an array of tangential arcs and radial rivulets in which actin and the Arp2/3 complex concentrate. In addition, the structure and dynamics of the cell center are transformed due to the accumulation of actin and membrane in this region and the constriction of the central actomyosin ring. Physiological evidence of an increase in actomyosin-based contractility following CalyA treatment was demonstrated in experiments in which cells generated tears in their cell centers in response to the drug. Western blotting and immunofluorescent localization with antibodies against the phosphorylated form of the myosin regulatory light chain (MRLC) suggested that the demonstrated constriction of actomyosin distribution was the result of CalyA-induced phosphorylation of MRLC. Overall, the results suggest that there is significant cross talk between the two underlying mechanisms of actin polymerization and actomyosin contraction, and indicate that changes in actomyosin tension may be translated into alterations in the structural organization of the actin cytoskeleton.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cm.10149DOI Listing

Publication Analysis

Top Keywords

actomyosin contraction
12
actin-based centripetal
8
centripetal flow
8
actomyosin distribution
8
actin polymerization
8
cell center
8
immunofluorescent localization
8
actin cytoskeleton
8
actin
7
actomyosin
7

Similar Publications

Tropomyosin is an actin-binding protein that plays roles ranging from regulating muscle contraction to controlling cytokinesis and cell migration. The simple nematode provides a useful model for studying the core functions of tropomyosin in an animal, having a relatively simple anatomy, and a single tropomyosin gene, , that produces seven isoforms. Three higher molecular weight isoforms (LEV-11A, D, O) regulate contraction of body wall and other muscles, but comparatively less is known of the functions of four lower molecular weight isoforms (LEV-11C, E, T, U).

View Article and Find Full Text PDF

Density-dependent flow generation in active cytoskeletal fluids.

Sci Rep

December 2024

Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.

Article Synopsis
  • The actomyosin cytoskeleton, made up of actin fibers and myosin motors, creates contractile forces that influence various cellular movements, but its density-related behaviors are not well understood.
  • By adjusting the concentration of actomyosin cell extracts, researchers found that in cell-sized droplets, actin flows toward the center at a critical density, creating oscillatory motion.
  • The study suggests that changes in myosin activity can disrupt regular oscillatory flows, indicating that the dynamics of actomyosin flow are influenced by the balance between actin density and myosin forces.
View Article and Find Full Text PDF

Mesenchymal cell contractility regulates villus morphogenesis and intestinal architecture.

Dev Biol

December 2024

Department of Dermatology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. Electronic address:

Article Synopsis
  • The small intestine's absorptive surface area is increased by structures called villi, which are influenced by stromal cells promoting bending through actomyosin contraction.
  • Researchers induced contractility in intestinal mesenchyme, leading to villi that were shorter and wider than normal due to architectural defects, despite increased cell proliferation.
  • The study highlights that contractility plays distinct roles in villus development and intestinal structure, separate from proliferation, and is dependent on interactions with the extracellular matrix.
View Article and Find Full Text PDF

Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing.

Biofabrication

December 2024

The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing 400016, People's Republic of China.

Article Synopsis
  • The fibroblast-myofibroblast transition is crucial in wound healing, involving ECM secretion and the contraction of stress fibers.
  • The study introduces a cell membrane-based nanoplatform using myofibroblast membranes and gold nanoparticles loaded with IL-4 to enhance wound healing and improve bacterial clearance.
  • This novel approach promotes the transition of primitive fibroblasts to myofibroblasts, facilitating matrix production, vascularization, and epithelial regeneration for better wound closure.
View Article and Find Full Text PDF
Article Synopsis
  • Ocular hypertension, a key risk factor for glaucoma, is linked to increased activity and stiffness in the trabecular meshwork (TM) due to cellular interactions.
  • Previous research identified high levels of septin-9 in TM cells under hypertensive conditions, prompting studies on its overexpression, deficiency, and drug targeting effects.
  • Findings indicate that septin-9 impacts intraocular pressure (IOP) regulation, suggesting that modulating septin cytoskeletal organization could be a potential new treatment strategy for glaucoma.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!