Gene therapy for inborn and acquired immune deficiency disorders.

Acta Haematol

Division of Research Immunology/Bone Marrow Transplantation, Children's Hospital Los Angeles, California,

Published: November 2003

Gene therapy has been under development as a way to correct inborn errors for over 20 years. Immune deficiencies are favorable candidates for gene therapy because of the potential selective advantage of genetically corrected cells in these conditions. Gene therapy for immune deficiencies has been the only application to show incontrovertible benefit in clinical trials to date. Despite the success in treating the underlying disease, there have been two cases of insertional oncogenesis reported in one of these early phase trials. Gene therapy approaches and clinical trials for several inborn as well as acquired immune deficiencies will be reviewed.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000072455DOI Listing

Publication Analysis

Top Keywords

gene therapy
20
immune deficiencies
12
acquired immune
8
clinical trials
8
gene
5
therapy inborn
4
inborn acquired
4
immune
4
immune deficiency
4
deficiency disorders
4

Similar Publications

The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.

View Article and Find Full Text PDF

Nevoid basal cell carcinoma syndrome (Gorlin syndrome): a case report.

J Med Case Rep

January 2025

Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.

Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.

View Article and Find Full Text PDF

Genetic association of lipid-lowering drug target genes with pancreatic cancer: a Mendelian randomization study.

Sci Rep

January 2025

Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.

Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!