Electron Paramagnetic Resonance (EPR), optical and infrared (IR) spectral studies have been performed on the pure and Cu-adsorbed exoskeletons of marine environment. The EPR spectrum of exoskeletons at room temperature exhibits a sharp signal at g approximately 1.9970. The possible redox mechanisms have been noticed on heating these exoskeletons in which the low spin Mn(3+) reduces to Mn(2+). The optical absorption spectra also give the evidence of the presence of Mn(3+) ions. The effects of thermal sintering on the EPR spectra have been studied and discussed in detail. The Cu-adsorbed samples clearly showed the adsorption of the Cu(2+) ions over CaCO(3) and the redox mechanism in these samples have been monitored by EPR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1386-1425(03)00122-7DOI Listing

Publication Analysis

Top Keywords

redox mechanisms
8
epr
5
structural studies
4
studies marine
4
exoskeletons
4
marine exoskeletons
4
exoskeletons redox
4
mechanisms observed
4
observed cu-supported
4
cu-supported caco3
4

Similar Publications

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Lattice Oxygen Redox Dynamics in Zeolite-Encapsulated CsPbBr Perovskite OER Electrocatalysts.

Adv Sci (Weinh)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

Understanding the oxygen evolution reaction (OER) mechanism is pivotal for improving the overall efficiency of water electrolysis. Despite methylammonium lead halide perovskites (MAPbX) have shown promising OER performance due to their soft-lattice nature that allows lattice-oxygen oxidation of active α-PbO layer surface, the role of A-site MA or X-site elements in the electrochemical reconstruction and OER mechanisms has yet to be explored. Here, it is demonstrated that the OER mechanism of perovskite@zeolite composites is intrinsically dominated by the A-site group of lead-halide perovskites, while the type of X-site halogen is crucial for the reconstruction kinetics of the composites.

View Article and Find Full Text PDF

Autophagy is a protective mechanism of cardiomyocytes. Hyperhomocysteinemia (HHcy) elevates oxidative and nitrosative stress levels, leading to an abnormal increase in nitration protein, possibly leading to abnormal autophagy regulation in cardiomyocytes. However, the regulatory effect of HHcy on autophagy at the post-translational modification level is still unclear.

View Article and Find Full Text PDF

Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT.

View Article and Find Full Text PDF

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!