Based on the structure of FKBP12 complexed with FK506 or rapamycin, with computer-aided design, two neurotrophic ligands, (3R)-4-(p-Toluenesulfonyl)-1,4-thiazane-3-carboxylic acid-L-Leucine ethyl ester and (3R)-4-(p-Toluenesulfonyl)-1,4-thiazane-3-carboxylic acid-L-phenylalanine benzyl ester, were designed and synthesized. Fluorescence experiments were used to detect the binding affinity between FKBP12 and these two ligands. Complex structures of FKBP12 with these two ligands were obtained by x-ray crystallography. In comparing FKBP12-rapamycin complex and FKBP12-FK506 complex as well as FKBP12-GPI-1046 solution structure with these new complexes, significant volume and surface area effects and obvious contact changes were detected which are expected to cause their different binding energies-showing these two novel ligands will become more effective neuron regeneration drugs than GPI-1046, which is currently undergoing phase II clinical trail as a neurotrophic drug. Analysis of volume and surface area effects also gives a new clue for structure-based drug design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303595PMC
http://dx.doi.org/10.1016/S0006-3495(03)74737-7DOI Listing

Publication Analysis

Top Keywords

fkbp12 ligands
8
volume surface
8
surface area
8
area effects
8
design structure-based
4
structure-based study
4
study potential
4
fkbp12
4
potential fkbp12
4
fkbp12 inhibitors
4

Similar Publications

Invasive fungal infections are a leading cause of death worldwide. Translating molecular insights into clinical benefits is challenging because fungal pathogens and their hosts share similar eukaryotic physiology. Consequently, current antifungal treatments have limited efficacy, may be poorly fungicidal in the host, can exhibit toxicity, and are increasingly compromised by emerging resistance.

View Article and Find Full Text PDF

Traditional small molecule drugs often target protein activity directly, but challenges arise when proteins lack suitable functional sites. An alternative approach is targeted protein degradation (TPD), which directs proteins to cellular machinery for proteolytic degradation. Recent studies have identified additional E3 ligases suitable for TPD, expanding the potential of this approach.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder clinically characterized by progressive muscular weakness and multisystem degeneration, which correlates with the size of CTG expansion and MBLN decrease. These changes induce a calcium and redox homeostasis imbalance in several models that recapitulate the features of premature tissue aging. In this study, we characterized the impact of a new family of FKBP12 ligands (generically named MPs or MP compounds) designed to stabilize FKBP12 binding to the ryanodine receptors and normalize calcium dysregulation under oxidative stress.

View Article and Find Full Text PDF

The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest.

View Article and Find Full Text PDF

Cyanotryptophans (CN-Trp) are privileged multimodal reporters on protein structure. They are similar in size to the canonical amino acid tryptophan and some of them exhibit bright fluorescence which responds sensitively to changes in the environment. We selected aminoacyl-tRNA synthetases specific for 4-, 5-, 6-, and 7-CN-Trp for high-yield in vivo production of proteins with a single, site-specifically introduced nitrile label.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!