Hydrolysis and polycondensation of triethoxysilane end-capped Poly (tetramethylene oxide) (Si-PTMO), tetraethoxysilane (TEOS), tetraisopropyltitanate (TiPT) and calcium nitrate (Ca(NO(3))(2)) gave transparent monolithics of PTMO-modified CaO-SiO(2)-TiO(2) hybrids. The samples with (TiPT)/(TEOS+TiPT) molar ratios from 0 to 0.20 under constant ratio of (Si-PTMO)/(TEOS+TiPT) of 2/3 in weight were prepared. It was found that the incorporation of TiO(2) component into a PTMO-CaO-SiO(2) hybrid results in an increase in the apatite-forming ability in a simulated body fluid: the hybrids with (TiPT)/(TEOS+TiPT) of 0.10 and 0.20 in mol formed an apatite on their surfaces within only 0.5 day. It seemed that, within the range of compositions studied, the TiO(2) content little affects the overall mechanical properties: Young's modulus were 52-55MPa, tensile strength, 7-9MPa, and strain at failure, about 30%. Thus, the organic-inorganic hybrids exhibiting both fairly high apatite-forming ability and high capability for deformation were obtained. These hybrid materials may be useful as new kind of bioactive bone-repairing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(03)00463-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!