Restriction enzymes are important model systems for understanding the mechanistic contributions of metal ions to nuclease activity. These systems are unique in that they combine distinct functions which have been shown to depend on metal ions: high-affinity DNA binding, sequence-specific recognition of DNA, and Mg(II)-dependent phosphodiester cleavage. While Ca(II) and Mn(II) are commonly used to promote DNA binding and cleavage, respectively, the metal ion properties that are critical to the support of these functions are not clear. To address this question, we assessed the abilities of a series of metal ions to promote DNA binding, sequence specificity, and cleavage in the representative PvuII endonuclease. Among the metal ions tested [Ca(II), Sr(II), Ba(II), Eu(III), Tb(III), Cd(II), Mn(II), Co(II), and Zn(II)], only Mn(II) and Co(II) were similar enough to Mg(II) to support detectable cleavage activity. Interestingly, cofactor requirements for the support of DNA binding are much more permissive; the survey of DNA binding cofactors indicated that Cd(II) and the heavier and larger alkaline earth metal ions Sr(II) and Ba(II) were effective cofactors, stimulating DNA binding affinity 20-200-fold. Impressively, the trivalent lanthanides Tb(III) and Eu(III) promoted DNA binding as efficiently as Ca(II), corresponding to an increase in affinity over 1000-fold higher than that observed under metal-free conditions. The trend for DNA binding affinity supported by these ions suggests that ionic radius and charge are not critical to the promotion of DNA binding. To examine the role of metal ions in sequence discrimination, we determined specificity factors [K(a)(specific)/K(a)(nonspecific)] in the presence of Cd(II), Ba(II), and Tb(III). Most interestingly, all of these ions compromised sequence specificity to some degree compared to Ca(II), by either increased affinity for a noncognate sequence, decreased affinity for the cognate sequence, or both. These results suggest that while amino acid-base contacts are important for specificity, the properties of metal ion cofactors at the catalytic site are also critical for sequence discrimination. This insight is invaluable to our efforts to understand and subsequently design sequence-specific nucleases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi035240g | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance.
View Article and Find Full Text PDFEpigenetics
December 2025
Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Livestock and Poultry Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
The gut microbiota plays key roles in host health by shaping the host immune responses through their metabolites, like indole derivatives from tryptophan. However, the direct role of these indole derivatives in macrophage fate decision and the underlying mechanism remains unknown. Here, we found that bacterial indole-3-propionic acid (IPA) downregulates interleukin-1beta (IL-1β) production in M1 macrophages through inhibition of nuclear factor-kappa B (NF-κB) signaling.
View Article and Find Full Text PDFSci Rep
January 2025
Sexually Transmitted and Bloodborne Infections Surveillance and Molecular Epidemiology, Sexually Transmitted and Bloodborne Infections Division at the JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada.
Human Immunodeficiency Virus Type 1 (HIV) set-point viral load is a strong predictor of disease progression and transmission risk. A recent genome-wide association study in individuals of African ancestries identified a region on chromosome 1 significantly associated with decreased HIV set-point viral load. Knockout of the closest gene, CHD1L, enhanced HIV replication in vitro in myeloid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!