In 1990, the NIH formally recognized the need for investigation of the problem of damaging the effects of cardiopulmonary bypass, issuing RFA HL-90-12-H, which emphasized production of neurologic defects in the very young and the elderly. The authors were at that time involved in comparison of pulsatile flow to steady flow cardiopulmonary bypass in large ungulates. The world literature recognizes five damaging effects of steady flow cardiopulmonary bypass that can be mitigated by pulsatile flow: metabolic acidosis, interstitial fluid accumulation, elevated systemic vascular resistance, arteriovenous shunting, and impaired brain oxygenation. To maximize the beneficial effect of pulsatile flow, however, it is necessary that its morphology be physiologic. It has been stated in the past that this goal may not be possible using standard size aortic cannulas. The purpose of this publication is to describe a method by which this feat has been achieved in 150 pound ungulates undergoing prolonged cardiopulmonary bypass.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002480-199207000-00134DOI Listing

Publication Analysis

Top Keywords

cardiopulmonary bypass
20
pulsatile flow
16
flow cardiopulmonary
12
damaging effects
8
steady flow
8
flow
6
cardiopulmonary
5
bypass
5
achievement physiologic
4
pulsatile
4

Similar Publications

We present the case of a 74-year-old female patient with a 50 mm ascending aortic aneurysm who underwent ascending aorta replacement. During routine open heart surgery, suboptimal flow in the cardiopulmonary bypass circuit, led to the discovery of a type B aortic dissection with substantial flow in the false lumen. Conservative management was chosen, focusing on blood pressure control in the ICU.

View Article and Find Full Text PDF

The subclavian artery's intrathoracic segment is a rare peripheral artery aneurysm site. Common causes are atherosclerosis, trauma, vasculitis, and infection. Subclavian artery aneurysms have a higher propensity for rupture, thrombosis, embolization, and compression of surrounding structures, thus necessitating urgent surgical care.

View Article and Find Full Text PDF

Computed tomography dataset virtual dissection for sternal re-entry in congenital cardiac surgery.

Indian J Thorac Cardiovasc Surg

February 2025

Department of Paediatric and Congenital Heart Surgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Rao Saheb, Achutrao Patwardhan Marg, Four Bungalows, Andheri West, Mumbai, Maharashtra 400053 India.

Unlabelled: In congenital heart surgery, redo-sternotomies are very common. In most cases, sternal re-entry is achieved without serious complications. However, sometimes elective institution of peripheral cardiopulmonary bypass is needed for safe sternotomy, albeit with a long cardio-pulmonary bypass time.

View Article and Find Full Text PDF

Unlabelled: The combination of hypertrophic cardiomyopathy with outflow tract obstruction, severe pre-capillary and post-capillary pulmonary hypertension, and severe primary mitral regurgitation is rare and presents distinct management challenges.

Background And Clinical Significance: Pulmonary hypertension is an independent predictor of all-cause mortality in patients with hypertrophic cardiomyopathy managed medically and often precludes patients from undergoing cardiopulmonary bypass due to increased surgical morbidity and mortality. In studies specifically evaluating surgical myectomy, however, survival is favorable in patients with moderate-to-severe pulmonary hypertension.

View Article and Find Full Text PDF

Purpose: Tranexamic acid (TXA) is widely used as an antifibrinolytic drug. However, studies to determine the optimal blood concentration of TXA have produced inconsistent results. During cardiac surgery, cardiopulmonary bypass (CPB) has serious effects on drug distribution, elimination, and plasma concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!