High field human imaging.

J Magn Reson Imaging

FC Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands.

Published: November 2003

This review article examines the state of knowledge regarding human imaging using MRI at high main magnetic field strengths. The article starts with a summary of the technical issues associated with magnetic field strengths in the range of 3-8 T, including magnet characteristics and the properties of radiofrequency magnetic fields, with special reference to sensitivity, power deposition, and homogeneity. The published data on tissue-water relaxation times in the brain is tabulated and the implications for contrast and pulse sequence implementation is elucidated. The behavior of the major fast imaging sequences, fast low angle shot (FLASH), rapid acquisition with relaxation enhancement (RARE), and echo planar imaging (EPI), is examined in this context. A number of anatomical images from 3 T systems are presented as examples. Particular attention is given to various forms of vascular imaging, namely, time of flight angiography, venography, and arterial spin labeling. The most complex changes in contrast with main magnetic field strength are in activation studies utilizing the blood oxygen level dependent mechanism, which are examined in detail. Improvements in spatial specificity are emphasized, particularly in conjunction with spin-echo imaging. The article concludes with a discussion of the current status and the potential impact of technical developments such as parallel imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.10390DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
human imaging
8
main magnetic
8
field strengths
8
imaging
7
high field
4
field human
4
imaging review
4
review article
4
article examines
4

Similar Publications

Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment.

View Article and Find Full Text PDF

In cancer research and personalized medicine, mesoporous silica nanoparticles (MSNs) have emerged as a significant breakthrough in both cancer treatment and diagnosis. MSNs offer targeted drug delivery, enhancing therapeutic effectiveness while minimizing adverse effects on healthy cells. Due to their unique characteristics, MSNs provide targeted drug delivery, maximizing therapeutic effectiveness with minimal adverse effects on healthy cells.

View Article and Find Full Text PDF

Background: Prepancreatic postduodenal portal vein (PPPV) is a rare anatomic variant where the portal vein (PV) runs anterior to the pancreas and posterior to the duodenum. Only 20 cases of PPPV, all in adults, have been reported in literature. We report the first case of PPPV in a pediatric patient discovered intraoperatively during total pancreatectomy with islet autotransplantation (TPIAT) and the third known case in which the PPPV could be isolated intraoperatively.

View Article and Find Full Text PDF

Minimally invasive medical treatments for peripheral nerve stimulation are critically needed to minimize surgical risks, enhance the precision of therapeutic interventions, and reduce patient recovery time. Magnetoelectric nanoparticles (MENPs), known for their unique ability to respond to both magnetic and electric fields, offer promising potential for precision medicine due to their dual tunable functionality. In this study a multi-physics modeling of the MENPs was performed, assessing their capability to be targeted through external magnetic fields and become electrically activated.

View Article and Find Full Text PDF

Introduction: Transcranial magnetic stimulation (TMS) is widely used for the noninvasive activation of neurons in the human brain. It utilizes a pulsed magnetic field to induce electric pulses that act on the central nervous system, altering the membrane potential of nerve cells in the cerebral cortex to treat certain mental diseases. However, the effectiveness of TMS can be compromised by significant heat generation and the clicking noise produced by the pulse in the TMS coil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!