Failure of Notch signaling in zebrafish mind bomb (mib) mutants results in a neurogenic phenotype where an overproduction of early differentiating neurons is accompanied by the loss of later-differentiating cell types. We have characterized in detail the hindbrain phenotype of mib mutants. Hindbrain branchiomotor neurons (BMNs) are reduced in number but not missing in mib mutants. In addition, BMN clusters are frequently fused across the midline in mutants. Mosaic analysis indicates that the BMN patterning and fusion defects in the mib hindbrain arise non-cell autonomously. Ventral midline signaling is defective in the mutant hindbrain, in part due to the differentiation of some midline cells into neural cells. Interestingly, while early hindbrain patterning appears normal in mib mutants, subsequent rhombomere-specific gene expression is completely lost. The defects in ventral midline signaling and rhombomere patterning are accompanied by an apparent loss of neuroepithelial cells in the mutant hindbrain. These observations suggest that, by regulating the differentiation of neuroepithelial cells into neurons, Notch signaling preserves a population of non-neuronal cells that are essential for maintaining patterning mechanisms in the developing neural tube.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219915PMC
http://dx.doi.org/10.1002/dvdy.10429DOI Listing

Publication Analysis

Top Keywords

mib mutants
16
neurogenic phenotype
8
mind bomb
8
notch signaling
8
ventral midline
8
midline signaling
8
mutant hindbrain
8
neuroepithelial cells
8
hindbrain
7
mutants
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!