Resistin expression in different adipose tissue depots during rat development.

Mol Cell Biochem

Laboratori de Biologia Molecular, Nutrició i Biotecnologia, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Spain.

Published: October 2003

AI Article Synopsis

Article Abstract

Resistin is a hormonal factor synthesised by adipocytes that was first thought to be related with the resistance to insulin in obesity, but whose function is not yet completely established. Here we have studied the ontogenic pattern of resistin mRNA expression in different white adipose tissue depots (WAT)--epididymal, inguinal, mesenteric and retroperitoneal--and in brown adipose tissue (BAT), as well as the circulating resistin levels, in rats of different ages (from the suckling period to one year of age). Resistin mRNA was determined by Northern blotting, and serum levels by enzyme immunoassay. In WAT, resistin expression remains almost constant with age, except in early development, where there is a peak of expression in the epididymal and retroperitoneal depots, and a decrease in the inguinal one, while the expression remains constant for the mesenteric depot. Moreover, there is a site-specific difference regarding resistin expression: all the depots express characteristic levels of mRNA, especially at the age of 2 months, the moment when resistin mRNA levels are significantly higher in the epididymal and the retroperitoneal than in the inguinal and mesenteric WAT and than in the BAT. The transient increased resistin expression in the epididymal and the retroperitoneal WAT at a period of time in which there is a change in diet (from milk to chow) suggests a common nutritional regulation of the resistin gene. Circulating resistin levels increase with age probably reflecting the increase in the body fat content.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025500605884DOI Listing

Publication Analysis

Top Keywords

resistin expression
16
adipose tissue
12
resistin mrna
12
epididymal retroperitoneal
12
resistin
11
tissue depots
8
inguinal mesenteric
8
circulating resistin
8
resistin levels
8
expression remains
8

Similar Publications

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.

View Article and Find Full Text PDF

Role of resistin in the porcine uterus: effects on endometrial steroidogenesis.

Reprod Fertil Dev

January 2025

Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.

Context The adipose tissue produces adipokines - hormones essential to many biological functions, including reproduction. Aims We hypothesised that resistin, one of the adipokines, is present in the blood plasma, uterine luminal flushings (ULF) and uterus of pigs during the oestrous cycle and early pregnancy, and that resistin influences uterine steroidogenesis. Methods This study aimed to determine the expression of resistin in the porcine endometrium and myometrium during the cycle and pregnancy by quantitative real-time polymerase chain reaction and western blot (WB).

View Article and Find Full Text PDF

Sucralose-Enhanced Adipogenesis on Preadipocyte Human Cell Line During Differentiation Process.

Int J Mol Sci

December 2024

Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico.

Sucralose, a commonly nonnutritive sweetener used in daily products of habitual diet, is related to impairing the gut microbiome by disrupting inflammatory response, promoting weight gain by increasing adipose tissue and promoting chronic inflammatory processes. Considering the impact of sucralose in the development of metabolic diseases, in this work, we focused on the impact of sucralose on the adipocyte differentiation process to determine if sucralose can promote adipogenesis and increase adipose tissue depots in PCS 210 010 human preadipocytes cell line. Sucralose at 25 (S25) and 100 ng/µL (S100) concentrations were tested against control with no edulcorant (NS) during the adipocyte differentiation process at 48 h and 96 h.

View Article and Find Full Text PDF

Therapeutic Potential of Dimethyl Fumarate for the Treatment of High-Fat/High-Sucrose Diet-Induced Obesity.

Antioxidants (Basel)

December 2024

Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, bloco F, 3° floor, room 301, Cidade Universitária, Rio de Janeiro CEP 21941-902, RJ, Brazil.

Obesity is characterized by an imbalance between energy intake and expenditure that triggers abnormal growth of adipose tissues. Dimethyl fumarate (DMF) and its primary active metabolite, monomethyl fumarate (MMF), are Nrf2 activators and have been recognized as strategic antioxidants. This study aimed to evaluate the potential of MMF and DMF to interfere with adipogenesis and obesity, and identify the molecular mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!