In this paper we report that 3'-azido-3'-deoxythymidine (AZT) treatment of human erythroleukemia (K562) cells greatly alters the pattern of protein glycans and significantly modifies beta,(1 --> 4)galactosyltransferase, beta-galactosidase, and alpha,(2 --> 8)sialyltransferase activities. In particular, AZT-treated K562 cells exhibited a decreased incorporation of sialic acid (86% of control) into protein glycans, being the reduced alpha,(2 --> 6) incorporation almost of the same magnitude with respect to that of alpha,(2 --> 3) (93 and 90% of control, respectively). Moreover, the drug exposure of cells induced a decrease of both mannose terminally linked and galactose linked as beta,(1 --> 4) (90 and 92% of control, respectively) and a significant increase of galactose beta,(1 --> 3) (112% of control). In addition, beta,(1 --> 4)galactosyltransferase and beta-galactosidase activities were found enhanced in K562-treated cells (30 and 12%, respectively), while alpha,(2-8 )sialyltransferase activity decreased (75% of control). Sialyltransferase activities of other types i.e. 30, 60, 3 N, 6 N, did not show any appreciable differences irrespective of AZT-treatment. Besides previous studies which report that AZT exposure of K562 cells, indirectly prevents nucleotide-sugar import into the Golgi complex, with consequent inhibition of glycosylation, our observations show for the first time that AZT affects several enzymatic activities involved in specific glycosylation reactions leading, in turn, to protein glycans alteration.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1025561009412DOI Listing

Publication Analysis

Top Keywords

protein glycans
16
k562 cells
16
beta1 -->
16
alpha2 -->
12
glycans alteration
8
enzymatic activities
8
activities involved
8
azt-treated k562
8
--> 4galactosyltransferase
8
4galactosyltransferase beta-galactosidase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!