Role of brain natriuretic peptide in cerebral vasospasm.

Acta Neurochir (Wien)

Department of Neurosurgery, Rambam Medical Center and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.

Published: October 2003

Background: Brain natriuretic peptide (BNP) is a potent natriuretic factor responsible for hyponatremia observed in patients with SAH. Through its systemic effects (reduction of blood volume and blood pressure) BNP may augment cerebral blood flow reduction and ischemia secondary to vasospasm. The purpose of the present study was to evaluate the relationship between BNP plasma concentration during the first 12 days following SAH and the development of cerebral vasospasm (CVS). The authors propose a hypothesis for the role played by natriuretic peptides in the pathophysiology of cerebral vasospasm based on the present findings and review the literature.

Methods: Thirty eight patients with spontaneous SAH were prospectively included in the present study. BNP plasma concentrations were assessed at four different time periods following SAH (day 1-3, 4-6, 7-9, 10-12). TCD evidence of CVS was found in 26 patients (68.5%), fourteen patients (36.8%) had delayed ischemic neurological deficits (DIND).

Findings: Initial BNP plasma concentrations were significantly more elevated in patients who eventually did not develop DIND (95.07+/-107.65 pg/ml vs. 25.81+/-22.57 pg/ml, p=0.0053). However, in patients with DIND, the BNP plasma concentration increased by 3.69 ( p<0.05), 5.89 ( p<0.001) and 4.54 fold ( p<0.001) between days 1-3 to days 4-6, 7-9 and 10-12 respectively (day 1 was regarded as the day of hemorrhage). In patients without CVS or asymptomatic CVS the BNP plasma concentration decreased between days 1-3 to day 10-12. A similar trend in BNP plasma concentration was found in patients with severe SAH (Fisher's score 3-4) as compared with patients with non visible or moderate SAH (BNP concentration ratio day 7-9/1-3: 4.37 vs. 0.75, p=0.015; day 10-12/1-3: 3.37 vs. 0.3, p=0.0144). The trend in BNP plasma concentration between day 1-3 to day 7-9 was found to correlate with CVS severity with an average increase of 2.01, 3.8 and 5.44 fold for mild, moderate and severe VS respectively ( p<0.01, r=0.4174).

Interpretation: These results suggest that BNP secretion in SAH patients is closely related to the bleeding intensity and vasospasm severity as well as to development of DIND with a progressive and marked increase during the clinical course in patients who eventually develop cerebral ischemia. Taken together the local and systemic effects of BNP on CBF suggest that BNP might play a role in the pathophysiology of CVS through its systemic effects on blood pressure and plasma volume BNP leading to an aggravation of brain ischemia secondary to vasospasm.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-003-0101-7DOI Listing

Publication Analysis

Top Keywords

bnp plasma
16
cerebral vasospasm
12
brain natriuretic
8
natriuretic peptide
8
plasma concentration
8
plasma concentrations
8
bnp
6
patients
6
role brain
4
natriuretic
4

Similar Publications

Dilated cardiomyopathy (DCM), a form of non-ischaemic myocardial disease, is characterised by structural and functional cardiac abnormalities. As defined by the World Health Organisation, DCM constitutes a significant cardiac pathology, leading to increased morbidity and mortality due to complications such as heart failure and arrhythmias. The diagnostic process for DCM predominantly employs echocardiography and MRI, with biomarkers like NT-pro BNP and troponin providing supportive, yet non-specific, evidence.

View Article and Find Full Text PDF

Chronic pressure overload induces adverse cardiac remodelling characterised by left ventricular (LV) hypertrophy and fibrosis, leading to heart failure (HF). Identification of new biomarkers for adverse cardiac remodelling enables us to better understand this process and, consequently, to prevent HF. We recently identified clusterin (CLU) as a biomarker of cardiac remodelling and HF after myocardial infarction.

View Article and Find Full Text PDF
Article Synopsis
  • Heart failure (HF) is linked to the use of NSAIDs, but it's unclear whether they lead more to heart failure with reduced ejection fraction (HFrEF) or preserved ejection fraction (HFpEF).
  • Research in mice showed that while COX-2 inhibition didn't affect cardiac function overall, aged female mice experienced signs of diastolic dysfunction and elevated BNP levels while maintaining preserved ejection fraction.
  • The findings suggest that COX-2 deletion specifically leads to HFpEF rather than HFrEF and indicates that calcium handling imbalances may affect heart relaxation in this context.
View Article and Find Full Text PDF

Background: The prevalence of sleep-disordered breathing (SDB) in patients with heart failure (HF) is a significant concern, leading to adverse outcomes. This network meta-analysis (NMA) is dedicated to evaluate the relative effectiveness of diverse therapeutic approaches for SDB treatments in the context of HF.

Methods: An extensive search up to May 19, 2023, was implemented in PubMed, Cochrane, Embase, and Web of Science to identify randomized controlled trials (RCTs).

View Article and Find Full Text PDF

Introduction: Patients with type 2 diabetes (T2D) undergoing dialysis exhibit a higher mortality rate compared with those with other conditions, primarily due to vascular complications including coronary artery disease, heart failure and stroke. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, a type of drug for T2D, have reportedly decreased cardiovascular and renal events in patients with heart failure and chronic kidney disease, irrespective of diabetes presence. Nevertheless, the evidence supporting the use of SGLT2 inhibitors in patients undergoing dialysis has been limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!