Possible anti-recombinogenic role of Bloom's syndrome helicase in double-strand break processing.

Nucleic Acids Res

Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8126, Institut Gustave Roussy, 39 Rue Camille Desmoulins, 94805 Villejuif Cedex, France.

Published: November 2003

Bloom's syndrome (BS) which associates genetic instability and predisposition to cancer is caused by mutations in the BLM gene encoding a RecQ family 3'-5' DNA helicase. It has been proposed that the generation of genetic instability in BS cells could result from an aberrant non-homologous DNA end joining (NHEJ), one of the two main DNA double-strand break (DSB) repair pathways in mammalian cells, the second major pathway being homologous recombination (HR). Using cell extracts, we report first that Ku70/80 and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), key factors of the end-joining machinery, and BLM are located in close proximity on DNA and that BLM binds to DNA only in the absence of ATP. In the presence of ATP, BLM is phosphorylated and dissociates from DNA in a strictly DNA-PKcs-dependent manner. We also show that BS cells display, in vivo, an accurate joining of DSBs, reflecting thus a functional NHEJ pathway. In sharp contrast, a 5-fold increase of the HR-mediated DNA DSB repair in BS cells was observed. These results support a model in which NHEJ activation mediates BLM dissociation from DNA, whereas, under conditions where HR is favored, e.g. at the replication fork, BLM exhibits an anti-recombinogenic role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC275476PMC
http://dx.doi.org/10.1093/nar/gkg834DOI Listing

Publication Analysis

Top Keywords

anti-recombinogenic role
8
bloom's syndrome
8
double-strand break
8
genetic instability
8
dna
8
dsb repair
8
blm
6
role bloom's
4
syndrome helicase
4
helicase double-strand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!