CYP73A1 catalyzes cinnamic acid hydroxylation, a reaction essential for the synthesis of lignin monomers and most phenolic compounds in higher plants. The native CYP73A1, initially isolated from Jerusalem artichoke (Helianthus tuberosus), was engineered to simplify purification from recombinant yeast and improve solublity and stability in the absence of detergent by replacing the hydrophobic N terminus with the peptitergent amphipathic sequence PD1. Optimized expression and purification procedures yielded 4 mg engineered CYP73A1 L(-1) yeast culture. This water-soluble enzyme was suitable for 1H-nuclear magnetic resonance (NMR) investigation of substrate positioning in the active site. The metabolism and interaction with the enzyme of cinnamate and four analogs were compared by UV-visible and 1H-NMR analysis. It was shown that trans-3-thienylacrylic acid, trans-2-thienylacrylic acid, and 4-vinylbenzoic acid are good ligands and substrates, whereas trans-4-fluorocinnamate is a competitive inhibitor. Paramagnetic relaxation effects of CYP73A1-Fe(III) on the 1H-NMR spectra of cinnamate and analogs indicate that their average initial orientation in the active site is parallel to the heme. Initial orientation and distances of ring protons to the iron do not explain the selective hydroxylation of cinnamate in the 4-position or the formation of single products from the thienyl compounds. Position adjustments are thus likely to occur during the later steps of the catalytic cycle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC281615 | PMC |
http://dx.doi.org/10.1104/pp.103.020305 | DOI Listing |
J Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFBlood Adv
January 2025
Vanderbilt University Medical Center, Nashville, Tennessee, United States.
In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Spore germination in is initiated by a cascade of activities of several proteins that culminates in the activation of SleC, a cell-wall-processing enzyme. We report herein the details of the enzymatic activities of SleC by the use of synthetic peptidoglycan fragments and of spore sacculi. The reactions include the formation of 1,6-anhydromuramate─a hallmark of lytic transglycosylase activity─as well as a muramate hydrolytic product, both of which proceed through the same transient oxocarbenium species.
View Article and Find Full Text PDFScience
January 2025
Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
In the ancient microbial Wood-Ljungdahl pathway, carbon dioxide (CO) is fixed in a multistep process that ends with acetyl-coenzyme A (acetyl-CoA) synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). In this work, we present structural snapshots of the CODH/ACS from the gas-converting acetogen , characterizing the molecular choreography of the overall reaction, including electron transfer to the CODH for CO reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site, and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer, and protect the reaction intermediates.
View Article and Find Full Text PDFJ Drug Target
January 2025
College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!